OFFSET
0,8
COMMENTS
Variant of A052509 with an additional diagonal of 1's. - R. J. Mathar, Oct 12 2011
Starting with g(0) = {0}, generate g(n) for n > 0 inductively using these rules:
(1) if x is in g(n-1), then x + 1 is in g(n); and
(2) if x is in g(n-1) and x < 2, then x/2 is in g(n).
Then g(1) = {1/1}, g(2) = {1/2,2/1}, g(3) = {1/4,3/2,3/1}, etc. The denominators in g(n) are 2^0, 2^1, ..., 2^(n-1), and T(n,k) is the number of occurrences of 2^(n-1-k), for k = 0..n-1. - Clark Kimberling, Nov 09 2015
G.f.: Sum_{n>=0, 0<=k<=n} T(n,k) * x^n * y^k = (1-x^2*y) / ((1-x*y)*(1-x-x^2*y)). - Jianing Song, May 30 2022
LINKS
Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
S. Sivasubramanian, Signed excedance enumeration in the hyperoctahedral group El. J. Combinat. 21 (1) (2014) #P2.10, Remark 16.
FORMULA
T(n, 0) = T(n, n) = 1 for n >= 0; T(n, n-1) = 1 for n >= 1; T(n, k) = T(n-1, k) + T(n-2, k-1) for k=1, 2, ..., n-2, n >= 3. [Corrected by Jianing Song, May 30 2022]
T(n, k) = T(n-1, k-1) + U(n-1, k) for k=1, 2, ..., floor(n/2), n >= 3, array U as in A011973.
EXAMPLE
Rows:
1
1 1
1 1 1
1 2 1 1
1 3 2 1 1
1 4 4 2 1 1
1 5 7 4 2 1 1
MATHEMATICA
Clear[t]; t[n_, k_] := t[n, k] = If[k == 0 || k == n || k == n-1, 1, t[n-1, k] + t[n-2, k-1]]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 01 2013 *)
PROG
(Haskell)
a054123 n k = a054123_tabl !! n !! k
a054123_row n = a054123_tabl !! n
a054123_tabl = [1] : [1, 1] : f [1] [1, 1] where
f us vs = ws : f vs ws where
ws = zipWith (+) (0 : init us ++ [0, 0]) (vs ++ [1])
-- Reinhard Zumkeller, May 26 2015
(PARI) A052509(n, k) = sum(m=0, k, binomial(n-k, m));
T(n, k) = if(k==n, 1, A052509(n-1, k)) \\ Jianing Song, May 30 2022
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 05 2003
STATUS
approved