login
A054125
Sum of the arrays in A054123 and A054124.
2
2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 4, 4, 4, 2, 2, 5, 6, 6, 5, 2, 2, 6, 9, 8, 9, 6, 2, 2, 7, 13, 12, 12, 13, 7, 2, 2, 8, 18, 19, 16, 19, 18, 8, 2, 2, 9, 24, 30, 24, 24, 30, 24, 9, 2, 2, 10, 31, 46, 39, 32, 39, 46, 31, 10, 2, 2, 11, 39, 68, 65, 48, 48, 65
OFFSET
0,1
COMMENTS
Row sums are twice Fibonacci numbers, A006355(n+2).
FORMULA
From Jianing Song, May 30 2022:
T(n,k) = 2 if k = 0 or k = n, A052509(n-1,k) + A052509(n-1,n-k) otherwise.
G.f.: Sum_{n>=0, 0<=k<=n} T(n,k) * x^n * y^k = (1-x^2*y) * (1/((1-x*y)*(1-x-x^2*y)) + 1/((1-x)*(1-x*y-x^2*y))). (End)
EXAMPLE
Rows:
2;
2,2;
2,2,2;
2,3,3,2;
...
PROG
(PARI) A052509(n, k) = sum(m=0, k, binomial(n-k, m));
T(n, k) = if(k==0 || k==n, 2, A052509(n-1, k) + A052509(n-1, n-k)) \\ Jianing Song, May 30 2022
CROSSREFS
Sequence in context: A029243 A306240 A109829 * A177227 A174373 A232270
KEYWORD
nonn,tabl,eigen
STATUS
approved