login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 71A for Monster.
2

%I #30 Jul 05 2018 14:00:07

%S 1,0,1,1,1,1,2,2,3,3,4,4,6,6,7,8,10,11,13,14,17,19,22,24,29,31,36,40,

%T 46,50,58,63,72,79,89,98,111,121,136,149,167,182,204,222,247,270,299,

%U 326,362,393,434,473,521,566,623,676,742,806,882,956,1047,1133

%N McKay-Thompson series of class 71A for Monster.

%C Also McKay-Thompson series of class 71B for Monster. - _Michel Marcus_, Feb 19 2014

%H G. C. Greubel, <a href="/A034322/b034322.txt">Table of n, a(n) for n = -1..2500</a>

%H I. Chen and N. Yui, <a href="http://people.math.sfu.ca/~ichen/pub/chen-yui.pdf">Singular values of Thompson series</a>. In Groups, difference sets and the Monster (Columbus, OH, 1993), pp. 255-326, Ohio State University Mathematics Research Institute Publications, 4, de Gruyter, Berlin, 1996.

%H J. H. Conway and S. P. Norton, <a href="http://blms.oxfordjournals.org/content/11/3/308.extract">Monstrous Moonshine</a>, Bull. Lond. Math. Soc. 11 (1979) 308-339.

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H David A. Madore, <a href="http://mathforum.org/kb/thread.jspa?forumID=253&amp;threadID=1602206&amp;messageID=5836094">Coefficients of Moonshine (McKay-Thompson) series</a>, The Math Forum

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F a(n) ~ exp(4*Pi*sqrt(n/71)) / (sqrt(2) * 71^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jul 05 2018

%e T71A = 1/q + q + q^2 + q^3 + q^4 + 2*q^5 + 2*q^6 + 3*q^7 + 3*q^8 + 4*q^9 + ...

%t QP := QPochhammer; f[x_, y_] := QP[-x, x*y]*QP[-y, x*y]*QP[x*y, x*y]; G[x_] := f[-x^2, -x^3]/f[-x, -x^2]; H[x_] := f[-x, -x^4]/f[-x, -x^2]; a:= CoefficientList[Series[G[x^71]*H[x] - x^14*H[x^71]*G[x], {x, 0, 80}], x]; Table[a[[n]], {n, 1, 70}] (* _G. C. Greubel_, Jul 05 2018 *)

%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

%K nonn

%O -1,7

%A _N. J. A. Sloane_

%E More terms from _Michel Marcus_, Feb 18 2014