login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086458
Both n and n^3 have the same initial digit and also n and n^3 have the same final digit when expressed in base 10.
4
0, 1, 10, 11, 29, 34, 99, 100, 101, 104, 105, 106, 109, 110, 111, 114, 115, 116, 119, 120, 121, 124, 125, 274, 275, 276, 279, 280, 281, 284, 285, 286, 289, 290, 291, 294, 295, 296, 299, 311, 314, 315, 316, 319, 320, 321, 324, 325, 326, 329, 330, 331, 334, 335
OFFSET
0,3
COMMENTS
Intersection of A008854 and A144582. - Michel Marcus, Mar 19 2015
LINKS
FORMULA
left$(str$(n), 1) = left$(str$(n^3), 1) AND right$(str$(n), 1) = right$(str$(n^3), 1)
EXAMPLE
a(12) = 109 appears in the sequence because 109*109*109 = 1295029.
MATHEMATICA
sidQ[n_]:=Module[{idn=IntegerDigits[n], i3=IntegerDigits[n^3]}, idn[[1]]==i3[[1]]&&idn[[-1]]== i3[[-1]]]; Select[Range[0, 400], sidQ] (* Harvey P. Dale, May 14 2023 *)
PROG
(PARI) isok(n) = (n == 0) || ((dn=digits(n)) && (ds=digits(n^3)) && (dn[#dn] == ds[#ds])); \\ Michel Marcus, Mar 19 2015
CROSSREFS
Cf. A086457 (similar sequence with squares).
Cf. A008854 (initial digit), A144582 (final digit).
Sequence in context: A355631 A056067 A300678 * A179856 A098795 A108580
KEYWORD
base,easy,nonn
AUTHOR
Jeremy Gardiner, Jul 20 2003
STATUS
approved