The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270397 Denominators of r-Egyptian fraction expansion for sqrt(3) - 1, where r(k) = 1/Fibonacci(k+1). 1
 2, 3, 6, 21, 411, 120274, 10572781147, 74407087111123560666, 5372512080606517833291366730287672914459, 41169436260792910821230360026041473906108740980452651576082359437785122898819171 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1).  Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k).  Then x = r(1)/n(1)) + r(2)/(n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x. See A269993 for a guide to related sequences. LINKS Clark Kimberling, Table of n, a(n) for n = 1..13 Eric Weisstein's World of Mathematics, Egyptian Fraction EXAMPLE sqrt(3) - 1 = 1/2 + 1/(2*3) + 1/(3*6) + 1/(5*21) + ... MATHEMATICA r[k_] := 1/Fibonacci[k+1]; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt - 1; Table[n[x, k], {k, 1, z}] PROG r(k) = 1/fibonacci(k+1); f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); ); a(k, x=sqrt(3)-1) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 22 2016 CROSSREFS Cf. A269993, A000045, A160390. Sequence in context: A303224 A007501 A227367 * A278106 A015773 A015768 Adjacent sequences:  A270394 A270395 A270396 * A270398 A270399 A270400 KEYWORD nonn,frac,easy AUTHOR Clark Kimberling, Mar 22 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 15:28 EDT 2021. Contains 347691 sequences. (Running on oeis4.)