login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes whose reversal in base 10 is also prime (called "palindromic primes" by D. Wells, although that name usually refers to A002385). Also called reversible primes.
(Formerly M0657)
89

%I M0657 #60 Jan 02 2025 09:33:34

%S 2,3,5,7,11,13,17,31,37,71,73,79,97,101,107,113,131,149,151,157,167,

%T 179,181,191,199,311,313,337,347,353,359,373,383,389,701,709,727,733,

%U 739,743,751,757,761,769,787,797,907,919,929,937,941,953,967,971,983,991,1009,1021

%N Primes whose reversal in base 10 is also prime (called "palindromic primes" by D. Wells, although that name usually refers to A002385). Also called reversible primes.

%C The numbers themselves need not be palindromes.

%C The range is a subset of the range of A071786. - _Reinhard Zumkeller_, Jul 06 2009

%C Number of terms less than 10^n: 4, 13, 56, 260, 1759, 11297, 82439, 618017, 4815213, 38434593, ..., . - _Robert G. Wilson v_, Jan 08 2015

%D Roozbeh Hazrat, Mathematica: A Problem-Centered Approach, Springer 2010, pp. 39, 131-132

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 134.

%H T. D. Noe, <a href="/A007500/b007500.txt">Table of n, a(n) for n = 1..10000</a>

%H Cécile Dartyge, Bruno Martin, Joël Rivat, Igor E. Shparlinski, and Cathy Swaenepoel, <a href="https://arxiv.org/abs/2309.11380">Reversible primes</a>, arXiv:2309.11380 [math.NT], 2023. See p. 3.

%p revdigs:= proc(n)

%p local L,nL,i;

%p L:= convert(n,base,10);

%p nL:= nops(L);

%p add(L[i]*10^(nL-i),i=1..nL);

%p end:

%p Primes:= select(isprime,{2,seq(2*i+1,i=1..5*10^5)}):

%p Primes intersect map(revdigs,Primes); # _Robert Israel_, Aug 14 2014

%t Select[ Prime[ Range[ 168 ] ], PrimeQ[ FromDigits[ Reverse[ IntegerDigits[ # ] ] ] ]& ] (* _Zak Seidov_, corrected by _T. D. Noe_ *)

%t Select[Prime[Range[1000]],PrimeQ[IntegerReverse[#]]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Aug 15 2016 *)

%o (Magma) [ p: p in PrimesUpTo(1030) | IsPrime(Seqint(Reverse(Intseq(p)))) ]; // _Bruno Berselli_, Jul 08 2011

%o (Haskell)

%o a007500 n = a007500_list !! (n-1)

%o a007500_list = filter ((== 1) . a010051 . a004086) a000040_list

%o -- _Reinhard Zumkeller_, Oct 14 2011

%o (PARI) is_A007500(n)={ isprime(n) & is_A095179(n)} \\ _M. F. Hasler_, Jan 13 2012

%o (Python)

%o from sympy import prime, isprime

%o A007500 = [prime(n) for n in range(1,10**6) if isprime(int(str(prime(n))[::-1]))] # _Chai Wah Wu_, Aug 14 2014

%o (Python)

%o from gmpy2 import is_prime, mpz

%o from itertools import count, islice, product

%o def agen(): # generator of terms

%o yield from [2, 3, 5, 7]

%o p = 11

%o for digits in count(2):

%o for first in "1379":

%o for mid in product("0123456789", repeat=digits-2):

%o for last in "1379":

%o s = first + "".join(mid) + last

%o if is_prime(t:=mpz(s)) and is_prime(mpz(s[::-1])):

%o yield int(t)

%o print(list(islice(agen(), 60))) # _Michael S. Branicky_, Jan 02 2025

%Y Cf. A006567, A007628.

%Y Cf. A002385 (primes that are palindromes in base 10).

%Y Equals A002385 union A006567.

%Y Complement of A076056 with respect to A000040. [From _Reinhard Zumkeller_, Jul 06 2009]

%Y Cf. A004086, A010051, A000040.

%K base,nonn,nice,changed

%O 1,1

%A _N. J. A. Sloane_, _Robert G. Wilson v_

%E More terms from Larry Reeves (larryr(AT)acm.org), Oct 31 2000

%E Added further terms to the sequence Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 16 2009. Checked by _N. J. A. Sloane_, Jan 20 2009.

%E Third reference added by _Harvey P. Dale_, Oct 17 2011