login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022100 Fibonacci sequence beginning 1, 10. 7
1, 10, 11, 21, 32, 53, 85, 138, 223, 361, 584, 945, 1529, 2474, 4003, 6477, 10480, 16957, 27437, 44394, 71831, 116225, 188056, 304281, 492337, 796618, 1288955, 2085573, 3374528, 5460101, 8834629, 14294730, 23129359, 37424089, 60553448, 97977537, 158530985 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n-1)=sum(P(10;n-1-k,k),k=0..ceiling((n-1)/2)), n>=1, with a(-1)=9. These are the SW-NE diagonals in P(10;n,k), the (10,1) Pascal triangle A093645. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.

In general, for b Fibonacci sequence beginning with 1, h, we have:

b(n) = (2^(-1-n)*((1 - sqrt(5))^n*(1 + sqrt(5) - 2*h) + (1 + sqrt(5))^n*(-1 + sqrt(5) + 2*h)))/sqrt(5). - Herbert Kociemba, Dec 18 2011

LINKS

Table of n, a(n) for n=0..36.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (1, 1).

FORMULA

a(n)= a(n-1) + a(n-2) for n>=2, a(0)=1, a(1)=10, a(-1):=9.

G.f.: (1 + 9*x)/(1 - x - x^2).

a(n)=sum{k=0..n, Fib(n-k+1)(9*binomial(1, k)-8*binomial(0, k))}. - Paul Barry, May 05 2005

a(n) = ((1+sqrt5)^n-(1-sqrt5)^n)/(2^n*sqrt5)+ 4.5*((1+sqrt5)^(n-1)-(1-sqrt5)^(n-1))/(2^(n-2)*sqrt5). Offset 1. a(3)=11. - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009

a(n) = 10*A000045(n) + A000045(n-1). - Paolo P. Lava, May 18 2015

From Bruno Berselli, Feb 20 2017: (Start)

a(n) =  9*A000045(n) + A000045(n+1).

a(n) = 11*A000045(n) - A000045(n-2). (End)

MAPLE

with(combinat): P:=proc(q) local n; for n from 0 to q do

print(10*fibonacci(n)+fibonacci(n-1)); od; end: P(10^2); # Paolo P. Lava, May 18 2015

MATHEMATICA

LinearRecurrence[{1, 1}, {1, 10}, 40] (* Harvey P. Dale, May 17 2017 *)

PROG

(MAGMA) a0:=1; a1:=10; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013

CROSSREFS

Cf. A000045.

a(n) = A109754(9, n+1) = A101220(9, 0, n+1).

Sequence in context: A255536 A298849 A277588 * A041475 A041204 A041202

Adjacent sequences:  A022097 A022098 A022099 * A022101 A022102 A022103

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 19:04 EDT 2018. Contains 315270 sequences. (Running on oeis4.)