OFFSET
1,5
COMMENTS
Difference terms of the array columns in triangle format becomes A117502.
Row sums of the triangle are A104161: (1, 2, 5, 10, 19, 34, 59, ...), generated by a(k) = a(k-1) + a(k-2) + n.
This is the lower triangular version of A109754 (without a row and column 0). - Ross La Haye, Apr 12 2006
LINKS
G. C. Greubel, Rows n = 1..100 of triangle, flattened
FORMULA
The triangle by rows = antidiagonals of an array in which n-th row is generated by a Fibonacci-like operation: (1, n...then a(k+1) = a(k) + a(k-1)).
T(n,k) = n*Fibonacci(k-1) + Fibonacci(k-2). - G. C. Greubel, Jul 13 2019
EXAMPLE
First few rows of the array T(n,k) are:
k=1 k=2 k=3 k=4 k=5 k=6
n=1: 1, 1, 2, 3, 5, 8, ...
n=2: 1, 2, 3, 5, 8, 13, ...
n=3: 1, 3, 4, 7, 11, 18, ...
n=4: 1, 4, 5, 9, 14, 23, ...
n=5: 1, 5, 6, 11, 17, 28, ...
First few rows of the triangle are:
1;
1, 1;
1, 2, 2;
1, 3, 3, 3;
1, 4, 4, 5, 5;
1, 5, 5, 7, 8, 8;
1, 6, 6, 9, 11, 13, 13;
1, 7, 7, 11, 14, 18, 21, 21; ...
MATHEMATICA
a[n_, k_] := a[n, k] = If[k==1, 1, If[k==2, n, a[n, k-1] + a[n, k-2]]]; Table[a[n-k+1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 15 2017 *)
T[n_, k_]:= n*Fibonacci[k-1] + Fibonacci[k-2]; Table[T[n-k+1, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jul 13 2019 *)
PROG
(PARI) T(n, k) = n*fibonacci(k-1) + fibonacci(k-2);
for(n=1, 15, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jul 13 2019
(Python)
from sympy.core.cache import cacheit
@cacheit
def a(n, k):
return 1 if k==1 else n if k==2 else a(n, k - 1) + a(n, k - 2)
for n in range(1, 21): print([a(n - k + 1, k) for k in range(1, n + 1)]) # Indranil Ghosh, Aug 19 2017
(Magma) F:=Fibonacci; [(n-k+1)*F(k-1) + F(k-2): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 13 2019
(Sage) f=fibonacci; [[(n-k+1)*f(k-1) + f(k-2) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 13 2019
(GAP) F:=Fibonacci;; Flat(List([1..15], n-> List([1..n], k-> (n-k+1)*F(k-1) + F(k-2) ))); # G. C. Greubel, Jul 13 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Mar 23 2006
EXTENSIONS
Row sums comment corrected by Philippe Deléham, Nov 18 2013
STATUS
approved