login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117504
Prime at which the cumulative sum in A117503 is prime.
3
37, 137, 151, 173, 409, 467, 503, 677, 937, 1091, 1153, 1229, 1303, 1409, 1453, 1471, 1531, 2137, 2221, 2251, 2393, 2503, 2593, 2633, 2671, 2797, 2837, 3001, 3023, 3089, 3163
OFFSET
1,1
FORMULA
Multiply consecutive primes by Pi, truncate to integer, sum until a prime sum is reached.
EXAMPLE
In a(1)=37, the cumulative sum of primes 1-12 in A117503 has risen to 613, a prime -- 37 being the 12th prime to be multiplied by Pi, with integer of result added to previous results.
MAPLE
Digits := 30 ; A117504 := proc(nmax) local a, pisum, p ; a := [] ; pisum := 0 ; p :=1 ; while nops(a) <=nmax do while true do pisum := pisum+floor(Pi*ithprime(p)) ; p := p+1 ; if isprime(pisum) then a := [op(a), ithprime(p-1)] ; break ; fi ; od : od : RETURN(a) ; end: a := A117504(30) ; # R. J. Mathar
MATHEMATICA
Prime[#]&/@Flatten[Position[Accumulate[Table[Floor[Pi p], {p, Prime[Range[500]]}]], _?PrimeQ]] (* Harvey P. Dale, Jul 19 2023 *)
PROG
(UBASIC)
10 Ct=1
20 B=nxtprm(B)
30 C=int(pi(B))
40 D=D+C
41 print Ct, B, C, D
50 if D=prmdiv(D) then print D:stop
55 Ct=Ct+1
60 goto 20
CROSSREFS
Cf. A117503.
Sequence in context: A250899 A139734 A142388 * A055783 A044369 A044750
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Mar 25 2006
EXTENSIONS
Corrected by R. J. Mathar, Oct 26 2006
STATUS
approved