login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022090
Fibonacci sequence beginning 0, 7.
4
0, 7, 7, 14, 21, 35, 56, 91, 147, 238, 385, 623, 1008, 1631, 2639, 4270, 6909, 11179, 18088, 29267, 47355, 76622, 123977, 200599, 324576, 525175, 849751, 1374926, 2224677, 3599603, 5824280, 9423883, 15248163, 24672046, 39920209, 64592255, 104512464
OFFSET
0,2
COMMENTS
The number of heptagons in the n-th ring of the Klein Quartic. - Amiram Eldar, Nov 14 2023
REFERENCES
Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, p. 15.
LINKS
Tanya Khovanova, Recursive Sequences.
William P. Thurston, The Eightfold Way: A Mathematical Sculpture by Helaman Ferguson, in: The Eightfold Way: The Beauty of the Klein Quartic (ed. Silvio Levy), Cambridge University Press, New York, 1999, pp. 1-7.
Eric Weisstein's World of Mathematics, Klein Quartic.
FORMULA
a(n) = round( ((14*phi-7)/5) * phi^n) (works for n>3). - Thomas Baruchel, Sep 08 2004
a(n) = 7*F(n) = F(n+4) + F(n-4) for n>3.
a(n) = A119457(n+5,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 7*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008
MATHEMATICA
a={}; b=0; c=7; AppendTo[a, b]; AppendTo[a, c]; Do[b=b+c; AppendTo[a, b]; c=b+c; AppendTo[a, c], {n, 1, 40, 1}]; a (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)
CROSSREFS
Cf. sequences with formula Fibonacci(n+k)+Fibonacci(n-k) listed in A280154.
Sequence in context: A168374 A112438 A309459 * A245426 A168379 A179886
KEYWORD
nonn,easy
STATUS
approved