login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280154
a(n) = 5*Lucas(n).
7
10, 5, 15, 20, 35, 55, 90, 145, 235, 380, 615, 995, 1610, 2605, 4215, 6820, 11035, 17855, 28890, 46745, 75635, 122380, 198015, 320395, 518410, 838805, 1357215, 2196020, 3553235, 5749255, 9302490, 15051745, 24354235, 39405980, 63760215, 103166195, 166926410, 270092605, 437019015
OFFSET
0,1
COMMENTS
Fibonacci sequence beginning 10, 5.
After 5, the sequence provides the 3rd column of the rectangular array in A213590.
After 5, all terms belong to A191921 because a(n) = Lucas(n+4) - 3*Lucas(n-1).
From G. C. Greubel, Dec 27 2016: (Start)
{a(n) mod 3} yields (1,2,0,2,2,1,0,1), repeated, and is given as A082115.
{a(n) mod 6} yields (4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1) and is given as A082117. (End)
FORMULA
G.f.: 5*(2 - x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2) for n>1.
a(n) = Fibonacci(n+5) + Fibonacci(n-5), with Fibonacci(-k) = -(-1)^k*Fibonacci(k) for the negative indices.
MAPLE
F := n -> combinat:-fibonacci(n):
seq(F(n+5) + F(n-5), n=0..38); # Peter Luschny, Dec 29 2016
MATHEMATICA
Table[5 LucasL[n], {n, 0, 40}]
PROG
(PARI) vector(40, n, n--; fibonacci(n+5)+fibonacci(n-5))
(Magma) [5*Lucas(n): n in [0..40]];
(Sage)
def A280154():
x, y = 10, 5
while True:
yield x
x, y = y, x + y
a = A280154(); print([next(a) for _ in range(39)]) # Peter Luschny, Dec 29 2016
CROSSREFS
Subsequence of A084176.
Cf. A022088: 5*Fibonacci(n).
Cf. A022359: Lucas(n+5) + Lucas(n-5).
Cf. sequences with formula Fibonacci(n+k) + Fibonacci(n-k): A006355 (k=0, without the initial 1), A000032 (k=1), A022086 (k=2), A022112 (k=3, with an initial 4), A022090 (k=4), this sequence (k=5), A022352 (k=6).
Sequence in context: A083950 A045617 A158486 * A040093 A046797 A147675
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 27 2016
STATUS
approved