OFFSET
0,1
COMMENTS
Fibonacci sequence beginning 10, 5.
After 5, the sequence provides the 3rd column of the rectangular array in A213590.
After 5, all terms belong to A191921 because a(n) = Lucas(n+4) - 3*Lucas(n-1).
From G. C. Greubel, Dec 27 2016: (Start)
{a(n) mod 3} yields (1,2,0,2,2,1,0,1), repeated, and is given as A082115.
{a(n) mod 6} yields (4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1) and is given as A082117. (End)
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (1,1).
FORMULA
G.f.: 5*(2 - x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2) for n>1.
a(n) = Fibonacci(n+5) + Fibonacci(n-5), with Fibonacci(-k) = -(-1)^k*Fibonacci(k) for the negative indices.
MAPLE
F := n -> combinat:-fibonacci(n):
seq(F(n+5) + F(n-5), n=0..38); # Peter Luschny, Dec 29 2016
MATHEMATICA
Table[5 LucasL[n], {n, 0, 40}]
PROG
(PARI) vector(40, n, n--; fibonacci(n+5)+fibonacci(n-5))
(Magma) [5*Lucas(n): n in [0..40]];
(Sage)
def A280154():
x, y = 10, 5
while True:
yield x
x, y = y, x + y
a = A280154(); print([next(a) for _ in range(39)]) # Peter Luschny, Dec 29 2016
CROSSREFS
Subsequence of A084176.
Cf. A022088: 5*Fibonacci(n).
Cf. A022359: Lucas(n+5) + Lucas(n-5).
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 27 2016
STATUS
approved