login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022089
Fibonacci sequence beginning 0, 6.
5
0, 6, 6, 12, 18, 30, 48, 78, 126, 204, 330, 534, 864, 1398, 2262, 3660, 5922, 9582, 15504, 25086, 40590, 65676, 106266, 171942, 278208, 450150, 728358, 1178508, 1906866, 3085374, 4992240, 8077614, 13069854, 21147468, 34217322, 55364790, 89582112, 144946902
OFFSET
0,2
COMMENTS
Starting with a(0)=1, a(1)=3, a(n) = the number of ternary length-2 squarefree words of length n.
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.
LINKS
N. H. Bong, C. Dalfó, and M. À. Fiol, and D. Závacká, Some inner metric parameters of a digraph: Iterated line digraphs and integer sequences, arXiv:2409.02125 [math.CO], 2024. See p. 17.
Cristina Dalfó and Miquel Àngel Fiol, A Note on the Order of Iterated Line Digraphs, Journal of Graph Theory, Volume 85, Issue 2, June 2017, Pages 395-39, 2016; DOI: 10.1002/jgt.22068; arXiv:1607.08832 [math.CO], 2016.
Tanya Khovanova, Recursive Sequences
Christoph Richard and Uwe Grimm, On the entropy and letter frequencies of ternary squarefree words, arXiv:math/0302302 [math.CO], 2003.
FORMULA
a(n) = round( (12*phi-6)/5 * phi^n) for n>3. - Thomas Baruchel, Sep 08 2004
a(n) = 6F(n) = F(n+3) + F(n+1) + F(n-4), n>3.
a(n) = A119457(n+4,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 6*x/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = 6 * A000045(n). - Alois P. Heinz, Jan 18 2019
MAPLE
a:= n-> 6*(<<0|1>, <1|1>>^n)[1, 2]:
seq(a(n), n=0..40); # Alois P. Heinz, Jan 18 2019
MATHEMATICA
a={}; b=0; c=6; AppendTo[a, b]; AppendTo[a, c]; Do[b=b+c; AppendTo[a, b]; c=b+c; AppendTo[a, c], {n, 1, 12, 1}]; a (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)
LinearRecurrence[{1, 1}, {0, 6}, 50] (* Harvey P. Dale, Dec 05 2015 *)
CROSSREFS
Sequence in context: A315795 A315796 A242951 * A275288 A110357 A091827
KEYWORD
nonn,easy
STATUS
approved