login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309464
Number of squarefree parts in the partitions of n into 10 parts.
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 10, 20, 29, 49, 68, 106, 143, 209, 282, 394, 510, 692, 888, 1165, 1479, 1902, 2376, 3009, 3715, 4630, 5662, 6961, 8430, 10260, 12325, 14842, 17696, 21134, 25012, 29648, 34860, 41022, 47957, 56073, 65177, 75775, 87626, 101307
OFFSET
0,11
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} (mu(r)^2 + mu(q)^2 + mu(p)^2 + mu(o)^2 + mu(m)^2 + mu(l)^2 + mu(k)^2 + mu(j)^2 + mu(i)^2 + mu(n-i-j-k-l-m-o-p-q-r)^2), where mu is the Möbius function (A008683).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[(MoebiusMu[i]^2 + MoebiusMu[j]^2 + MoebiusMu[k]^2 + MoebiusMu[l]^2 + MoebiusMu[m]^2 + MoebiusMu[o]^2 + MoebiusMu[p]^2 + MoebiusMu[q]^2 + MoebiusMu[r]^2 + MoebiusMu[n - i - j - k - l - m - o - p - q - r]^2), {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
CROSSREFS
Cf. A008683.
Sequence in context: A205724 A040091 A168461 * A368362 A022093 A332874
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Aug 03 2019
STATUS
approved