Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #60 Oct 23 2024 01:25:04
%S 0,3,3,6,9,15,24,39,63,102,165,267,432,699,1131,1830,2961,4791,7752,
%T 12543,20295,32838,53133,85971,139104,225075,364179,589254,953433,
%U 1542687,2496120,4038807,6534927,10573734,17108661,27682395,44791056,72473451,117264507
%N Fibonacci sequence beginning 0, 3.
%C First differences of A111314. - _Ross La Haye_, May 31 2006
%C Pisano period lengths: 1, 3, 1, 6, 20, 3, 16, 12, 8, 60, 10, 6, 28, 48, 20, 24, 36, 24, 18, 60, ... . - _R. J. Mathar_, Aug 10 2012
%C For n>=6, a(n) is the number of edge covers of the union of two cycles C_r and C_s, r+s=n, with a single common vertex. - _Feryal Alayont_, Oct 17 2024
%D A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 7,17.
%H Vincenzo Librandi, <a href="/A022086/b022086.txt">Table of n, a(n) for n = 0..1000</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1).
%F a(n) = round( ((6*phi-3)/5) * phi^n ) for n>2. - _Thomas Baruchel_, Sep 08 2004
%F a(n) = 3*F(n). Also, a(n) = F(n-2) + F(n+2) for n>1, with F=A000045.
%F a(n) = A119457(n+1,n-1) for n>1. - _Reinhard Zumkeller_, May 20 2006
%F G.f.: 3*x/(1-x-x^2). - _Philippe Deléham_, Nov 19 2008
%F a(n) = A187893(n) - 1. - _Filip Zaludek_, Oct 29 2016
%F E.g.f.: 6*sinh(sqrt(5)*x/2)*exp(x/2)/sqrt(5). - _Ilya Gutkovskiy_, Oct 29 2016
%F a(n) = F(n+4) + F(n-4) - 4*F(n). - _Bruno Berselli_, Dec 29 2016
%p BB := n->if n=0 then 3; > elif n=1 then 0; > else BB(n-2)+BB(n-1); > fi: > L:=[]: for k from 1 to 34 do L:=[op(L),BB(k)]: od: L; # _Zerinvary Lajos_, Mar 19 2007
%p with (combinat):seq(sum((fibonacci(n,1)),m=1..3),n=0..32); # _Zerinvary Lajos_, Jun 19 2008
%t LinearRecurrence[{1, 1}, {0, 3}, 40] (* _Arkadiusz Wesolowski_, Aug 17 2012 *)
%t Table[Fibonacci[n + 4] + Fibonacci[n - 4] - 4 Fibonacci[n], {n, 0, 40}] (* _Bruno Berselli_, Dec 30 2016 *)
%t Table[3 Fibonacci[n], {n, 0, 40}] (* _Vincenzo Librandi_, Dec 31 2016 *)
%o (PARI) a(n)=3*fibonacci(n) \\ _Charles R Greathouse IV_, Nov 06 2014
%o (Magma) [3*Fibonacci(n): n in [0..40]]; // _Vincenzo Librandi_, Dec 31 2016
%Y Essentially the same as A097135. Cf. A026390, A036999.
%Y Cf. sequences with formula Fibonacci(n+k)+Fibonacci(n-k) listed in A280154.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_