Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 08 2022 08:44:49
%S 1,2,7,28,120,538,2493,11854,57558,284392,1426038,7241356,37173304,
%T 192638992,1006564439,5297715628,28061959428,149491856978,
%U 800425486692,4305263668514,23251846197766,126044501870378,685569373724964,3740339567665558,20463965229643218,112250484320225118
%N a(n) = T(2n,n), T given by A026769.
%C Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when below the diagonal, (1,1). - _Alois P. Heinz_, Sep 14 2016
%H Alois P. Heinz, <a href="/A026770/b026770.txt">Table of n, a(n) for n = 0..1000</a>
%F O.g.f.: 1/(1-x*(C(x)+S(x))), where C(x)=(1-sqrt(1-4x))/(2*x) is o.g.f. for A000108 and S(x)=(1-x-sqrt(1-6*x+x^2))/(2*x) is o.g.f. for A006318. - _Max Alekseyev_, Dec 02 2015
%p seq(coeff(series(2/(x + sqrt(1-4*x) + sqrt(1-6*x+x^2)), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Nov 01 2019
%t T[n_, k_] := T[n, k] = Which[k==0 || k==n, 1, n==2 && k==1, 2, k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], True, T[n-1, k-1] + T[n-1, k]];
%t a[n_] := T[2n, n];
%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, May 24 2019 *)
%o (PARI) { C = (1-sqrt(1-4*x+O(x^51)))/2/x; S = (1-x-sqrt(1-6*x+x^2 +O(x^51)))/2/x; Vec(1/(1-x*(C+S))) } /* _Max Alekseyev_, Dec 02 2015 */
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(x + Sqrt(1-4*x) + Sqrt(1-6*x+x^2)) )); // _G. C. Greubel_, Nov 01 2019
%o (Sage)
%o def A026770_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( 2/(x + sqrt(1-4*x) + sqrt(1-6*x+x^2)) ).list()
%o A026770_list(30) # _G. C. Greubel_, Nov 01 2019
%Y Cf. A000108, A006318, A026781, A104625, A109980.
%Y Cf. A026769, A026771, A026772, A026773, A026774, A026775, A026776, A026777, A026778, A026779.
%K nonn
%O 0,2
%A _Clark Kimberling_