login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208477
Difference between the sum of odd parts and the sum of even parts in all the partitions of n.
1
0, 1, 0, 5, 0, 11, 6, 25, 12, 50, 40, 96, 80, 173, 170, 320, 316, 545, 590, 930, 1020, 1552, 1760, 2537, 2900, 4066, 4736, 6450, 7540, 10045, 11856, 15482, 18280, 23555, 27920, 35461, 42032, 52805, 62662, 77955, 92380, 113963, 135040, 165295, 195540, 237866
OFFSET
0,4
LINKS
FORMULA
a(n) = A066967(n) - A066966(n).
G.f.: (Sum_{i>0} (2*i-1)*x^(2*i-1)/(1-x^(2*i-1))-2*i*x^(2*i)/(1-x^(2*i))) / Product_{j>0} (1-x^j). - Alois P. Heinz, Mar 10 2012
MAPLE
b:= proc(n, i) option remember; local g, h;
if n=0 then [1, 0]
elif i<1 then [0, 0]
else g:= b(n, i-1);
h:= `if`(i>n, [0, 0], b(n-i, i));
[g[1]+h[1], g[2]+h[2] +h[1]*i*(2*(i mod 2)-1)]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=0..60); # Alois P. Heinz, Mar 10 2012
MATHEMATICA
Map[Total[Select[#, OddQ]] - Total[Select[#, EvenQ]] &[Flatten[IntegerPartitions[#]]] &, -1 + Range[30]] (* Peter J. C. Moses, Mar 14 2014 *)
max = 60; s = Sum[x^(2i) (x^(2i) - 2i (x-1) - 1)/(x + x^(4i) - (x+1) x^(2i) ), {i, 1, Floor[max/2]}]/QPochhammer[x] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A291724 A340950 A156550 * A007392 A292105 A052401
KEYWORD
nonn
AUTHOR
Omar E. Pol, Mar 10 2012
EXTENSIONS
More terms from Alois P. Heinz, Mar 10 2012
STATUS
approved