Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Oct 29 2020 03:23:59
%S 1,1,2,5,12,28,65,151,350,807,1850,4221,9597,21760,49215,111032,
%T 249856,560835,1255854,2805969,6256784,13925698,30941050,68634679,
%U 152009239,336152787,742276931,1636747349,3604206106,7926412320,17410413153
%N First differences of the binomial transform of the distinct partition numbers (A000009).
%H Seiichi Manyama, <a href="/A129519/b129519.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: A(x) = Product_{n>=1} [1 + x^n/(1-x)^n].
%F a(n) = A266232(n) - A266232(n-1), for n>0. - _Vaclav Kotesovec_, Oct 30 2017
%F a(n) ~ exp(Pi*sqrt(n/6) + Pi^2/48) * 2^(n - 9/4) / (3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Oct 30 2017
%e Product formula is illustrated by:
%e A(x) = [1 + x + x^2 + x^3 + x^4 + x^5 +...]*
%e [1 + x^2 + 2x^3 + 3x^4 + 4x^5 + 5x^6 +...]*
%e [1 + x^3 + 3x^4 + 6x^5 + 10x^6 + 15x^7 +...]*
%e [1 + x^4 + 4x^5 + 10x^6 + 20x^7 + 35x^8 +...]*
%e [1 + x^5 + 5x^6 + 15x^7 + 35x^8 + 70x^9 +...]*...*
%e [1 + Sum_{k>=n+1} C(k-1,n)*x^k ]*...
%t Flatten[{1, Differences[Table[Sum[Binomial[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 40}]]}] (* _Vaclav Kotesovec_, Oct 30 2017 *)
%o (PARI) {a(n)=polcoeff(prod(k=0,n,1+sum(i=k+1,n,binomial(i-1,k)*x^i +x*O(x^n))),n)}
%Y Cf. A000009, A218482, A266232, A307501.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Apr 18 2007