login
A307313
a(n) is the denominator of n/2^(length of the binary representation of n).
0
2, 2, 4, 2, 8, 4, 8, 2, 16, 8, 16, 4, 16, 8, 16, 2, 32, 16, 32, 8, 32, 16, 32, 4, 32, 16, 32, 8, 32, 16, 32, 2, 64, 32, 64, 16, 64, 32, 64, 8, 64, 32, 64, 16, 64, 32, 64, 4, 64, 32, 64, 16, 64, 32, 64, 8, 64, 32, 64, 16, 64, 32, 64, 2, 128, 64, 128, 32, 128, 64
OFFSET
1,1
FORMULA
a(n) = denominator(n/2^A070939(n)).
a(n) = denominator(n/A062383(n)).
a(n) = 2^A070940(n).
EXAMPLE
For n=1, 1 = 1_2, a(1) = denominator(1/(2^1)) = denominator(1/2) = 2;
For n=2, 2 = 10_2, a(2) = denominator(2/(2^2)) = denominator(1/2) = 2;
For n=3, 3 = 11_2, a(3) = denominator(3/(2^2)) = denominator(3/4) = 4.
PROG
(PARI) a(n) = denominator(n/(2^(#binary(n))));
CROSSREFS
Cf. A062383, A070939, A000265 (numerators), A078267 (analog in base 10).
Sequence in context: A364557 A297112 A259192 * A338042 A131999 A113416
KEYWORD
nonn,base,frac
AUTHOR
Michel Marcus, Apr 02 2019
STATUS
approved