OFFSET
1,1
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 57.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
MATHEMATICA
Prime[ Select[ Range[200], PrimitiveRoot[ Prime[ # ]] == 3 & ]]
(* or *)
Select[ Prime@Range@200, PrimitiveRoot@# == 3 &] (* Robert G. Wilson v, May 11 2001 *)
PROG
(PARI) forprime(p=3, 1000, if(znorder(Mod(2, p))!=p-1&&znorder(Mod(3, p))==p-1, print1(p, ", ")));
(PARI) { n=0; forprime (p=3, 99999, if (znorder(Mod(2, p))!=p-1 && znorder(Mod(3, p))==p-1, n++; write("b001123.txt", n, " ", p); if (n>=1000, break) ) ) } \\ Harry J. Smith, Jun 14 2009
(Python)
from itertools import islice
from sympy import nextprime, is_primitive_root
def A001123_gen(): # generator of terms
p = 3
while (p:=nextprime(p)):
if not is_primitive_root(2, p) and is_primitive_root(3, p):
yield p
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, May 10 2001
STATUS
approved