login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337396
Expansion of sqrt((1-8*x+sqrt(1+64*x^2)) / (2 * (1+64*x^2))).
3
1, -2, -26, 76, 1222, -3772, -64676, 203992, 3607622, -11510636, -207302156, 666187432, 12142184476, -39211413464, -720760216328, 2335857124016, 43208062233158, -140406756766796, -2609918906614652, 8498967890177416, 158596941629422132, -517334728427373704, -9684521991498517112
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-4)^(n-k) * binomial(2*k,k) * binomial(2*n,2*k).
a(0) = 1, a(1) = -2 and n * (2*n-1) * (4*n-5) * a(n) = (4*n-3) * 2 * a(n-1) - 64 * (n-1) * (2*n-3) * (4*n-1) * a(n-2) for n > 1. - Seiichi Manyama, Aug 28 2020
MATHEMATICA
a[n_] := Sum[(-4)^(n - k) * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 23, 0] (* Amiram Eldar, Aug 26 2020 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(sqrt((1-8*x+sqrt(1+64*x^2))/(2*(1+64*x^2))))
(PARI) {a(n) = sum(k=0, n, (-4)^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}
CROSSREFS
Column k=4 of A337419.
Sequence in context: A152997 A345693 A229573 * A067204 A202077 A280212
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 26 2020
STATUS
approved