login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202077
Number of arrays of 5 integers in -n..n with sum zero and the sum of every adjacent pair being odd.
1
2, 26, 78, 264, 504, 1128, 1786, 3262, 4660, 7540, 10092, 15066, 19278, 27174, 33644, 45428, 54846, 71622, 84770, 107780, 125532, 156156, 179478, 219234, 249184, 299728, 337456, 400582, 447330, 524970, 582072, 676296, 745178, 858194, 940374
OFFSET
1,1
COMMENTS
Row 3 of A202076.
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9).
Conjectures from Colin Barker, May 26 2018: (Start)
G.f.: 2*x*(1 + 12*x + 22*x^2 + 45*x^3 + 22*x^4 + 12*x^5 + x^6) / ((1 - x)^5*(1 + x)^4).
a(n) = (230*n^4 + 552*n^3 + 424*n^2 + 96*n) / 384 for n even.
a(n) = (230*n^4 + 368*n^3 + 148*n^2 + 16*n + 6) / 384 for n odd.
(End)
EXAMPLE
Some solutions for n=3:
-2 0 0 -2 0 2 0 0 2 2 -2 2 2 2 -2 2
-1 -1 -3 1 -1 -1 -1 3 1 -3 3 1 -3 -3 1 -3
0 2 2 0 0 0 2 -2 -2 -2 2 0 0 2 -2 0
1 -3 1 -1 -1 -1 1 -1 -1 3 -3 -3 -1 -1 3 3
2 2 0 2 2 0 -2 0 0 0 0 0 2 0 0 -2
CROSSREFS
Cf. A202076.
Sequence in context: A229573 A337396 A067204 * A280212 A120551 A120547
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 10 2011
STATUS
approved