login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337394
Expansion of sqrt(2 / ( (1-6*x+25*x^2) * (1-5*x+sqrt(1-6*x+25*x^2)) )).
3
1, 5, 11, -29, -365, -1409, -155, 29485, 170035, 309775, -2064655, -18909175, -61552739, 81290561, 1901796395, 9145986419, 8604744275, -165227713249, -1168032362879, -2913302013175, 10702975797545, 132134872338925, 519716440255535, -109051949915065, -13098011769247075
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(2*n+1,2*k).
a(0) = 1, a(1) = 5 and n * (2*n+1) * (4*n-3) * a(n) = (4*n-1) * (12*n^2-6*n-1) * a(n-1) - 25 * (n-1) * (2*n-1) * (4*n+1) * a(n-2) for n > 1. - Seiichi Manyama, Aug 29 2020
MATHEMATICA
a[n_] := Sum[(-1)^(n-k) * Binomial[2*k, k] * Binomial[2*n+1, 2*k], {k, 0, n}]; Array[a, 25, 0] (* Amiram Eldar, Apr 29 2021 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(sqrt(2/((1-6*x+25*x^2)*(1-5*x+sqrt(1-6*x+25*x^2)))))
(PARI) {a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*k, k)*binomial(2*n+1, 2*k))}
CROSSREFS
Column k=1 of A337464.
Sequence in context: A234511 A053185 A358900 * A090119 A174922 A088484
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 25 2020
STATUS
approved