login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337393
Expansion of sqrt((1-5*x+sqrt(1-6*x+25*x^2)) / (2 * (1-6*x+25*x^2))).
3
1, 1, -5, -41, -125, 131, 3301, 15625, 16115, -254525, -1813055, -4617755, 14903725, 192390589, 767919595, -28588201, -18144634861, -105011253485, -184605603311, 1406589226405, 12610893954745, 40402054036345, -63847551719825, -1340432504352485, -6346702151685475
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(2*n,2*k).
a(0) = 1, a(1) = 1 and n * (2*n-1) * (4*n-5) * a(n) = (4*n-3) * (12*n^2-18*n+5) * a(n-1) - 25 * (n-1) * (2*n-3) * (4*n-1) * a(n-2) for n > 1. - Seiichi Manyama, Aug 28 2020
MATHEMATICA
a[n_] := Sum[(-1)^(n-k) * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 25, 0] (* Amiram Eldar, Apr 29 2021 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(sqrt((1-5*x+sqrt(1-6*x+25*x^2))/(2*(1-6*x+25*x^2))))
(PARI) {a(n) = sum(k=0, n, (-1)^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}
CROSSREFS
Column k=1 of A337419.
Sequence in context: A201718 A142101 A102265 * A262340 A128347 A349336
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 25 2020
STATUS
approved