login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234511
a(n) is the smallest prime(i) such that (prime(i) - prime(j))/(i - j) = prime(n) with i > j.
0
5, 11, 29, 97, 641, 1373, 2591, 4327, 8009, 19661, 36451, 134581, 38543, 172969, 212777, 268403, 1784171, 860239, 1562053, 6085103, 6958813, 3422971, 5103029, 14723567, 47973451, 38394329, 36271783, 75837497, 59160181, 47326919, 111660697, 369706811, 323627951
OFFSET
1,1
COMMENTS
(i - j) = 2 for all the calculated terms, with the exception of a(1) where (i - j) = 1 and a(6) where (i - j) = 4.
EXAMPLE
a(3) = 29 is the smallest prime (and 10th prime) such that there is a smaller 8th prime: 19 and (29 - 19) / (10 - 8) = 5 is the third prime.
MATHEMATICA
a[1]=5; a[n_] := Catch[Block[{r = Prime@n, i=2, j, p}, While[True, p = Prime[++i]; j = Mod[i, 2]; While[(j += 2) < i, If[p - Prime@j == r*(i-j), Throw@p]]]]] (* Giovanni Resta, Dec 28 2013 *)
PROG
(PARI) n=16; c=25000; for(b=2, c, forstep(a=b+2, c, 2, d=prime(a)-prime(b); e=(a-b); if(d/e==d\e&d/e==prime(n), print([a, b, prime(a), prime(b), d, e, d/e])))) \\ finds a(16) and in general a(n).
(PARI) okp(n, p) = {i = primepi(p); forprime (q = 2, p-1, j = primepi(q); if ((p-q)/(i-j) == prime(n), return(1)); ); }
a(n) = {p = 2; while (! okp(n, p), p = nextprime(p+1)); p; } \\ Michel Marcus, Dec 28 2013
CROSSREFS
Sequence in context: A183382 A100965 A001632 * A053185 A358900 A337394
KEYWORD
nonn
AUTHOR
Robin Garcia, Dec 27 2013
EXTENSIONS
a(17)-a(25) from Giovanni Resta, Dec 28 2013
a(26)-a(33) from Donovan Johnson, Jan 01 2014
STATUS
approved