login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183382 Half the number of n X 3 binary arrays with no element equal to a strict majority of its king-move neighbors. 1
1, 5, 11, 29, 89, 245, 669, 1891, 5297, 14753, 41267, 115455, 322661, 902047, 2522301, 7051895, 19715891, 55124449, 154123101, 430912643, 1204794989, 3368504981, 9418046333, 26332052309, 73622187095, 205841375745, 575515014243 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Column 3 of A183386.
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 4*a(n-2) + 6*a(n-3) - 13*a(n-4) + 3*a(n-5) - 2*a(n-6) + 6*a(n-7) + 4*a(n-8) + 5*a(n-9) - 4*a(n-10) - 2*a(n-11).
Empirical g.f.: x*(1 + 2*x - 2*x^2)*(1 - x - x^2 - x^3 - x^5 + 3*x^6 + x^7 + x^8) / (1 - 4*x + 4*x^2 - 6*x^3 + 13*x^4 - 3*x^5 + 2*x^6 - 6*x^7 - 4*x^8 - 5*x^9 + 4*x^10 + 2*x^11). - Colin Barker, Mar 28 2018
EXAMPLE
Some solutions for 5 X 3:
..0..0..1....0..1..0....0..0..1....0..1..0....0..1..1....0..1..0....0..1..0
..1..1..0....1..0..1....1..1..0....0..1..0....1..0..0....1..0..1....0..1..1
..0..1..0....0..1..0....0..0..1....1..1..0....0..1..1....1..0..1....1..0..0
..0..1..0....1..1..0....1..1..0....0..0..1....1..0..0....0..1..0....0..1..1
..0..1..0....0..0..1....0..0..1....1..1..0....0..1..1....0..1..0....1..0..0
CROSSREFS
Cf. A183386.
Sequence in context: A237642 A059508 A084817 * A100965 A001632 A234511
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 04 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 16:47 EST 2023. Contains 367525 sequences. (Running on oeis4.)