login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183383
Half the number of nX4 binary arrays with no element equal to a strict majority of its king-move neighbors
1
2, 9, 29, 109, 531, 2276, 9485, 41333, 179345, 769838, 3318436, 14331995, 61806029, 266512626, 1149721593, 4959529556, 21392085393, 92275053866, 398035409724, 1716936954230, 7406064472068, 31946418824054, 137802367508923
OFFSET
1,1
COMMENTS
Column 4 of A183386
LINKS
FORMULA
Empirical: a(n)=7*a(n-1)-15*a(n-2)+43*a(n-3)-155*a(n-4)+163*a(n-5)-355*a(n-6)+1192*a(n-7)-313*a(n-8)+1933*a(n-9)-5536*a(n-10)-1655*a(n-11)-7428*a(n-12)+14124*a(n-13)+6666*a(n-14)+14223*a(n-15)-23191*a(n-16)-5038*a(n-17)-12688*a(n-18)+19327*a(n-19)-3816*a(n-20)+12585*a(n-21)-6884*a(n-22)+1778*a(n-23)-7042*a(n-24)+3366*a(n-25)-594*a(n-26)-52*a(n-27)-152*a(n-28) for n>29
EXAMPLE
Some solutions for 5X4
..0..1..1..0....0..0..1..0....0..0..1..0....0..0..0..1....0..0..0..0
..1..0..0..1....1..1..1..0....1..1..1..0....1..1..1..0....1..1..1..1
..0..1..1..0....0..1..0..1....0..0..1..0....0..0..1..0....1..0..0..1
..0..1..0..1....0..1..0..1....1..1..1..0....1..0..1..0....0..0..0..0
..0..1..0..1....1..0..1..0....0..0..1..0....0..1..0..1....1..1..1..1
CROSSREFS
Sequence in context: A069006 A351191 A241774 * A280853 A360812 A268568
KEYWORD
nonn
AUTHOR
R. H. Hardin Jan 04 2011
STATUS
approved