login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Half the number of nX4 binary arrays with no element equal to a strict majority of its king-move neighbors
1

%I #5 Mar 31 2012 12:35:51

%S 2,9,29,109,531,2276,9485,41333,179345,769838,3318436,14331995,

%T 61806029,266512626,1149721593,4959529556,21392085393,92275053866,

%U 398035409724,1716936954230,7406064472068,31946418824054,137802367508923

%N Half the number of nX4 binary arrays with no element equal to a strict majority of its king-move neighbors

%C Column 4 of A183386

%H R. H. Hardin, <a href="/A183383/b183383.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n)=7*a(n-1)-15*a(n-2)+43*a(n-3)-155*a(n-4)+163*a(n-5)-355*a(n-6)+1192*a(n-7)-313*a(n-8)+1933*a(n-9)-5536*a(n-10)-1655*a(n-11)-7428*a(n-12)+14124*a(n-13)+6666*a(n-14)+14223*a(n-15)-23191*a(n-16)-5038*a(n-17)-12688*a(n-18)+19327*a(n-19)-3816*a(n-20)+12585*a(n-21)-6884*a(n-22)+1778*a(n-23)-7042*a(n-24)+3366*a(n-25)-594*a(n-26)-52*a(n-27)-152*a(n-28) for n>29

%e Some solutions for 5X4

%e ..0..1..1..0....0..0..1..0....0..0..1..0....0..0..0..1....0..0..0..0

%e ..1..0..0..1....1..1..1..0....1..1..1..0....1..1..1..0....1..1..1..1

%e ..0..1..1..0....0..1..0..1....0..0..1..0....0..0..1..0....1..0..0..1

%e ..0..1..0..1....0..1..0..1....1..1..1..0....1..0..1..0....0..0..0..0

%e ..0..1..0..1....1..0..1..0....0..0..1..0....0..1..0..1....1..1..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Jan 04 2011