login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200166
Number of -n..n arrays x(0..2) of 3 elements with nonzero sum and with zero through 2 differences all nonzero.
1
2, 34, 128, 348, 726, 1326, 2180, 3352, 4874, 6810, 9192, 12084, 15518, 19558, 24236, 29616, 35730, 42642, 50384, 59020, 68582, 79134, 90708, 103368, 117146, 132106, 148280, 165732, 184494, 204630, 226172, 249184, 273698, 299778, 327456, 356796
OFFSET
1,1
COMMENTS
Row 3 of A200165.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
Conjectures from Colin Barker, May 17 2018: (Start)
G.f.: 2*x*(1 + 14*x + 15*x^2 + 18*x^3) / ((1 - x)^4*(1 + x)).
a(n) = 11*n - 13*n^2 + 8*n^3 for n even.
a(n) = -4 + 11*n - 13*n^2 + 8*n^3 for n odd.
(End)
EXAMPLE
Some solutions for n=5:
.-2...-1...-1...-2...-5...-1...-2....2...-2...-4...-1...-3....1...-4....2...-2
..4....4....4...-4...-1....5....2....4....5....5....3...-1....5...-3....5...-5
.-4...-5....2....4...-2....4...-3....2....2....2...-4...-4...-2...-1....4....5
CROSSREFS
Cf. A200165.
Sequence in context: A337397 A263226 A200821 * A226407 A226336 A213826
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 13 2011
STATUS
approved