login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of -n..n arrays x(0..2) of 3 elements with nonzero sum and with zero through 2 differences all nonzero.
1

%I #17 Mar 19 2021 09:58:21

%S 2,34,128,348,726,1326,2180,3352,4874,6810,9192,12084,15518,19558,

%T 24236,29616,35730,42642,50384,59020,68582,79134,90708,103368,117146,

%U 132106,148280,165732,184494,204630,226172,249184,273698,299778,327456,356796

%N Number of -n..n arrays x(0..2) of 3 elements with nonzero sum and with zero through 2 differences all nonzero.

%C Row 3 of A200165.

%H R. H. Hardin, <a href="/A200166/b200166.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).

%F Conjectures from _Colin Barker_, May 17 2018: (Start)

%F G.f.: 2*x*(1 + 14*x + 15*x^2 + 18*x^3) / ((1 - x)^4*(1 + x)).

%F a(n) = 11*n - 13*n^2 + 8*n^3 for n even.

%F a(n) = -4 + 11*n - 13*n^2 + 8*n^3 for n odd.

%F (End)

%e Some solutions for n=5:

%e .-2...-1...-1...-2...-5...-1...-2....2...-2...-4...-1...-3....1...-4....2...-2

%e ..4....4....4...-4...-1....5....2....4....5....5....3...-1....5...-3....5...-5

%e .-4...-5....2....4...-2....4...-3....2....2....2...-4...-4...-2...-1....4....5

%Y Cf. A200165.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 13 2011