login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275709
a(n) = 2*n^3 + 3*n^2.
2
0, 5, 28, 81, 176, 325, 540, 833, 1216, 1701, 2300, 3025, 3888, 4901, 6076, 7425, 8960, 10693, 12636, 14801, 17200, 19845, 22748, 25921, 29376, 33125, 37180, 41553, 46256, 51301, 56700, 62465, 68608, 75141, 82076, 89425, 97200, 105413, 114076, 123201, 132800, 142885
OFFSET
0,2
COMMENTS
Apart from the initial zero this sequence gives the 2nd pentagonal number, the 4th hexagonal number, the 6th heptagonal number, the 8th octagonal number, the 10th nonagonal number, etc. as well as the 5th nonnegative number, the 7th triangular number, the 9th square, the 11th pentagonal number, the 13th hexagonal number, etc. This is a reliable pattern that does not seem to appear on any other pairs of polygonal numbers (see link).
a(n) is the maximal determinant of a 3 X 3 matrix with integer elements from {1, ..., n+1}, so (for example) the maximum determinant of a 3 X 3 matrix with integer elements from {1, ..., 5} = det(1, 5, 5; 5, 1, 5; 5, 5, 1) = a(4) = 176. - Matthew Scroggs, Dec 31 2022
LINKS
Carauleanu Marc and Colin Barker, Table of n, a(n) for n = 0..3030 (first 1000 terms from Colin Barker)
Joshua Giambalvo, Illustration of initial terms in a square array, Imgur, (2016).
Petro Kolosov, Another power identity involving binomial theorem and Faulhaber's formula, arXiv:1603.02468 [math.NT], 2018. (In particular p. 3)
FORMULA
From Colin Barker, Aug 06 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
G.f.: x*(5+8*x-x^2) / (1-x)^4.
(End)
a(n) = A033431(n) + A033428(n). - Omar E. Pol, Aug 09 2016
a(n) = A000290(n) * A005408(n+1). - Robert Israel, Aug 09 2016
a(n) = A320047(1, n, 0). - Kolosov Petro, Oct 04 2018
E.g.f.: x*(5 + 9*x + 2*x^2)*exp(x). - G. C. Greubel, Oct 19 2018
From Amiram Eldar, Jan 21 2023: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/18 + 4*log(2)/9 - 16/27.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/36 + Pi/9 -2*log(2)/9 - 8/27. (End)
MAPLE
seq(2*n^3+3*n^2, n=0..30); # Robert Israel, Aug 09 2016
MATHEMATICA
Table[2 n^3 + 3 n^2, {n, 0, 41}] (* or *)
CoefficientList[Series[x (5 + 8 x - x^2)/(1 - x)^4, {x, 0, 41}], x] (* Michael De Vlieger, Aug 11 2016 *)
PROG
(PARI) concat(0, Vec(x*(5+8*x-x^2)/(1-x)^4 + O(x^50))) \\ Colin Barker, Aug 28 2016
(PARI) a(n)=n^2*(2*n+3) \\ Charles R Greathouse IV, Aug 28 2016
(Magma) [n^2*(2*n + 3): n in [0..30]]; // G. C. Greubel, Oct 19 2018
(Python) for n in range(0, 50): print(n**2*(2*n+3), end=' ') # Stefano Spezia, Oct 19 2018
KEYWORD
nonn,easy
AUTHOR
Joshua Giambalvo, Aug 06 2016
STATUS
approved