OFFSET
1,1
COMMENTS
For l=T, the identity takes the form T^(2m+1) = Sum_{k=0..m} (-1)^(m-k)*U(m,T,k)*T^k, which holds for all positive integers T and m.
LINKS
Max Alekseyev, Derivation of the general formula for U(m,n,k), MathOverflow, 2018.
Petro Kolosov, On the link between binomial theorem and discrete convolution, arXiv:1603.02468 [math.NT], 2016-2025.
Petro Kolosov, More details on derivation of present sequence.
Petro Kolosov, Mathematica program, verifies the identity T^(2m+1) = Sum_{k=0..m} (-1)^(m-k)*U(m,T,k)*T^k for m=0,1,...,12.
Petro Kolosov, History and overview of the polynomial P_b^m(x), 2024.
FORMULA
U(m,l,t) = (-1)^m * Sum_{k=1..l} Sum_{j=t..m} binomial(j,t) * R(m,j) * k^{2j-t} * (-1)^j, where m = 1, l >= 1 and R(m,j) = A302971(m,j)/A304042(m,j); after Max Alekseyev, see links.
Conjectures from Colin Barker, Aug 03 2019: (Start)
G.f.: x*(5 + 6*x + 8*x^2 - 6*x^3 - x^4) / ((1 - x)^4*(1 + x)^4).
a(n) = (4 - 4*(-1)^n - 3*(-5+(-1)^n)*n - 3*(-3+(-1)^n)*n^2 + (1+(-1)^(1+n))*n^3) / 8.
a(n) = 4*a(n-2) - 6*a(n-4) + 4*a(n-6) - a(n-8) for n>8.
(End)
EXAMPLE
column column
l k=0 k=1
--- ------ ------
1 5 6
2 28 18
3 81 36
4 176 60
5 325 90
6 540 126
7 833 168
8 1216 216
9 1701 270
10 2300 330
11 3025 396
12 3888 468
...
MATHEMATICA
R[n_, k_] := 0
R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
(* Define the U(m, l, t) coefficients *)
U[m_, l_, t_] := (-1)^m Sum[Sum[Binomial[j, t] R[m, j] k^(2 j - t) (-1)^j, {j, t, m}], {k, 1, l}];
(* Define the value of the variable 'm' to be m = 1 for A320047 *)
m = 1;
(* Print first 10 rows of U(m, l, t) coefficients for 'm' defined above *)
Column[Table[U[m, l, t], {l, 1, 10}, {t, 0, m}]]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Kolosov Petro, Oct 04 2018
STATUS
approved