login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242152
Numbers n such that the sum of their unitary prime divisors divides sigma(n).
2
15, 24, 28, 35, 40, 42, 54, 60, 66, 95, 96, 110, 114, 117, 119, 120, 132, 135, 140, 143, 147, 168, 195, 198, 209, 224, 240, 250, 252, 258, 280, 287, 290, 315, 319, 322, 323, 360, 375, 377, 380, 384, 408, 460, 468, 470, 476, 480, 486, 496, 506, 507, 510, 520
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Paolo P. Lava)
EXAMPLE
Divisors of 315 are 1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 315. Its unitary prime divisors are 5 and 7. Finally, sigma(315) = 624 and 624 / (5 + 7) = 52.
MAPLE
with(numtheory): P:=proc(q) local a, b, k, n; for n from 1 to q do a:=divisors(n); b:=0;
for k from 1 to nops(a) do if isprime(a[k]) then if gcd(a[k], n/a[k])=1 then b:=b+a[k]; fi; fi; od;
if b>0 then if type(sigma(n)/b, integer) then print(n); fi; fi; od; end: P(10^10);
MATHEMATICA
unitaryPrimeSum[1]=0; unitaryPrimeSum[n_] := Total[(f = FactorInteger[n])[[;; , 1]] * (Boole[# == 1]& /@ f[[;; , 2]])]; Select[Range[500], (ups = unitaryPrimeSum[#]) > 0 && Divisible[DivisorSigma[1, #], ups] &] (* Amiram Eldar, Nov 26 2019 *)
PROG
(PARI) isok(n) = (v = sumdiv(n, d, d*isprime(d)*(gcd(d, n/d)==1))) && ! (sigma(n) % v); \\ Michel Marcus, May 05 2014
CROSSREFS
Sequence in context: A114558 A035408 A173035 * A269314 A269316 A081829
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, May 05 2014
STATUS
approved