Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Nov 26 2019 04:18:12
%S 15,24,28,35,40,42,54,60,66,95,96,110,114,117,119,120,132,135,140,143,
%T 147,168,195,198,209,224,240,250,252,258,280,287,290,315,319,322,323,
%U 360,375,377,380,384,408,460,468,470,476,480,486,496,506,507,510,520
%N Numbers n such that the sum of their unitary prime divisors divides sigma(n).
%H Amiram Eldar, <a href="/A242152/b242152.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Paolo P. Lava)
%e Divisors of 315 are 1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 315. Its unitary prime divisors are 5 and 7. Finally, sigma(315) = 624 and 624 / (5 + 7) = 52.
%p with(numtheory): P:=proc(q) local a,b,k,n; for n from 1 to q do a:=divisors(n); b:=0;
%p for k from 1 to nops(a) do if isprime(a[k]) then if gcd(a[k],n/a[k])=1 then b:=b+a[k]; fi; fi; od;
%p if b>0 then if type(sigma(n)/b,integer) then print(n); fi; fi; od; end: P(10^10);
%t unitaryPrimeSum[1]=0; unitaryPrimeSum[n_] := Total[(f = FactorInteger[n])[[;;,1]] * (Boole[# == 1]& /@ f[[;;,2]])]; Select[Range[500], (ups = unitaryPrimeSum[#]) > 0 && Divisible[DivisorSigma[1, #], ups] &] (* _Amiram Eldar_, Nov 26 2019 *)
%o (PARI) isok(n) = (v = sumdiv(n, d, d*isprime(d)*(gcd(d, n/d)==1))) && ! (sigma(n) % v); \\ _Michel Marcus_, May 05 2014
%Y Cf. A000203, A063956.
%K nonn,easy
%O 1,1
%A _Paolo P. Lava_, May 05 2014