login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189235
Expansion of (5-16*x+6*x^2+10*x^3-2*x^4)/(1-4*x+2*x^2+5*x^3-2*x^4-x^5)
4
5, 4, 12, 25, 64, 159, 411, 1068, 2808, 7423, 19717, 52529, 140251, 375015, 1003770, 2688570, 7204696, 19313075, 51782613, 138861732, 372414289, 998851473, 2679146955, 7186319506, 19276417059, 51707411684, 138702360471, 372064319188
OFFSET
0,1
COMMENTS
Same as A062883 preceded by 5.
Let U be the unit-primitive matrix (see [Jeffery])
U=U_(11,2)=
(0 0 1 0 0)
(0 1 0 1 0)
(1 0 1 0 1)
(0 1 0 1 1)
(0 0 1 1 1).
Then a(n)=Trace(U^n).
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers of a unit-primitive matrix U_(N,r) (0<r<floor(N/2)) and for which the closed-form expression for a(n) is derived from the eigenvalues of U_(N,r).
Formulae given below are special cases of general one's defined and discussed in Witula-Slota's paper. For example a(n) = A(n;1), where A(n;d) := Sum_{k=1..5} (1 + 2d*cos(2Pi*k/11))^n, n=0,1,..., d in C. - Roman Witula, Jul 26 2012
REFERENCES
R. Witula and D. Slota, Quasi-Fibonacci Numbers of Order 11, 10 (2007), J. Integer Seq., Article 07.8.5.
FORMULA
G.f.: (5-16*x+6*x^2+10*x^3-2*x^4)/(1-4*x+2*x^2+5*x^3-2*x^4-x^5).
a(n)=4*a(n-1)-2*a(n-2)-5*a(n-3)+2*a(n-4)+a(n-5), {a(m)}=5,4,12,25,64, m=0..4.
a(n)=Sum_{k=1..5} ((x_k)^2-1)^n; x_k=2*(-1)^(k-1)*cos(k*Pi/11).
MATHEMATICA
u = {{0, 0, 1, 0, 0}, {0, 1, 0, 1, 0}, {1, 0, 1, 0, 1}, {0, 1, 0, 1, 1}, {0, 0, 1, 1, 1}}; a[n_] := Tr[ MatrixPower[u, n] ]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 14 2013 *)
PROG
(PARI) Vec((5-16*x+6*x^2+10*x^3-2*x^4)/(1-4*x+2*x^2+5*x^3-2*x^4-x^5)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
L. Edson Jeffery, Apr 18 2011
STATUS
approved