login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array T(n,k) read by antidiagonals: Last survivor positions in Josephus problem for n numbers and a count of k, n >= 1, k >= 1.
6

%I #32 Mar 27 2023 05:16:54

%S 1,1,2,1,1,3,1,2,3,4,1,1,2,1,5,1,2,2,1,3,6,1,1,1,2,4,5,7,1,2,1,2,1,1,

%T 7,8,1,1,3,3,2,5,4,1,9,1,2,3,2,4,1,2,7,3,10,1,1,2,3,4,4,6,6,1,5,11,1,

%U 2,2,3,1,5,3,3,1,4,7,12,1,1,1,4,2,3,5,1,8,5,7,9,13

%N Array T(n,k) read by antidiagonals: Last survivor positions in Josephus problem for n numbers and a count of k, n >= 1, k >= 1.

%C Arrange 1, 2, 3, ..., n clockwise in a circle. Starting the count at 1, delete every k-th integer clockwise until only one remains, which is T(n,k).

%C The main diagonal (1, 1, 2, 2, 2, 4, 5, 4, ...) is A007495.

%C Concatenation of consecutive rows (up to the main diagonal) gives A032434.

%C The periods of the rows, (1, 2, 6, 12, 60, 60, 420, 840, ...), is given by A003418.

%H William Rex Marshall, <a href="/A198789/b198789.txt">First 141 antidiagonals of array, flattened</a>

%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>

%F T(1,k) = 1; for n > 1: T(n,k) = ((T(n-1,k) + k - 1) mod n) + 1.

%e .n\k 1 2 3 4 5 6 7 8 9 10

%e ----------------------------------

%e .1 | 1 1 1 1 1 1 1 1 1 1

%e .2 | 2 1 2 1 2 1 2 1 2 1

%e .3 | 3 3 2 2 1 1 3 3 2 2

%e .4 | 4 1 1 2 2 3 2 3 3 4

%e .5 | 5 3 4 1 2 4 4 1 2 4

%e .6 | 6 5 1 5 1 4 5 3 5 2

%e .7 | 7 7 4 2 6 3 5 4 7 5

%e .8 | 8 1 7 6 3 1 4 4 8 7

%e .9 | 9 3 1 1 8 7 2 3 8 8

%e 10 | 10 5 4 5 3 3 9 1 7 8

%t T[n_, k_] := T[n, k] = If[n == 1, 1, Mod[T[n-1, k]+k-1, n]+1];

%t Table[T[n-k+1, k], {n, 1, 13}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Mar 04 2023 *)

%Y Cf. A000027 (k = 1), A006257 (k = 2), A054995 (k = 3), A088333 (k = 4), A181281 (k = 5), A360268 (k = 6), A178853 (k = 7), A109630 (k = 8).

%Y Cf. A003418, A007495 (main diagonal), A032434, A198788, A198790.

%K nonn,easy,tabl

%O 1,3

%A _William Rex Marshall_, Nov 21 2011