login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321298
Triangle read by rows: T(n,k) is the number of the k-th eliminated person in the Josephus elimination process for n people and a count of 2, 1 <= k <= n.
6
1, 2, 1, 2, 1, 3, 2, 4, 3, 1, 2, 4, 1, 5, 3, 2, 4, 6, 3, 1, 5, 2, 4, 6, 1, 5, 3, 7, 2, 4, 6, 8, 3, 7, 5, 1, 2, 4, 6, 8, 1, 5, 9, 7, 3, 2, 4, 6, 8, 10, 3, 7, 1, 9, 5, 2, 4, 6, 8, 10, 1, 5, 9, 3, 11, 7, 2, 4, 6, 8, 10, 12, 3, 7, 11, 5, 1, 9, 2, 4, 6, 8, 10, 12, 1, 5, 9, 13, 7, 3, 11, 2, 4, 6, 8, 10, 12, 14
OFFSET
1,2
COMMENTS
In the Josephus elimination process for n and k, the numbers 1 through n are written in a circle. A pointer starts at position 1. Each turn, the pointer skips (k-1) non-eliminated number(s) going around the circle and eliminates the k-th number, until no numbers remain. This sequence represents the triangle J(n, i), where n is the number of people in the circle, i is the turn number, and k is fixed at 2 (every other number is eliminated).
FORMULA
From Pontus von Brömssen, Sep 18 2022: (Start)
The terms are uniquely determined by the following recursive formulas:
T(n,k) = 2*k if k <= n/2;
T(2*n,k) = 2*T(n,k-n)-1 if k > n;
T(2*n+1,k) = 2*T(n,k-n-1)+1 if k > n+1;
T(2*n+1,n+1) = 1.
(End)
From Pontus von Brömssen, Dec 11 2024: (Start)
The terms are also uniquely determined by the following recursive formulas:
T(1,1) = 1;
T(n,1) = 2 if n > 1;
T(n,k) = T(n-1,k-1)+2 if k > 1 and T(n-1,k-1) != n-1;
T(n,k) = 1 if k > 1 and T(n-1,k-1) = n-1.
T(n,A225381(n)) = 1.
T(n,A225381(n+1)-1) = n.
(End)
EXAMPLE
Triangle begins:
1;
2, 1;
2, 1, 3;
2, 4, 3, 1;
2, 4, 1, 5, 3;
2, 4, 6, 3, 1, 5;
2, 4, 6, 1, 5, 3, 7;
2, 4, 6, 8, 3, 7, 5, 1;
2, 4, 6, 8, 1, 5, 9, 7, 3;
2, 4, 6, 8, 10, 3, 7, 1, 9, 5;
2, 4, 6, 8, 10, 1, 5, 9, 3, 11, 7;
2, 4, 6, 8, 10, 12, 3, 7, 11, 5, 1, 9;
2, 4, 6, 8, 10, 12, 1, 5, 9, 13, 7, 3, 11;
...
For n = 5, to get the entries in 5th row from left to right, start with (^1, 2, 3, 4, 5) and the pointer at position 1, indicated by the caret. 1 is skipped and 2 is eliminated to get (1, ^3, 4, 5). (The pointer moves ahead to the next "live" number.) On the next turn, 3 is skipped and 4 is eliminated to get (1, 3, ^5). Then 1, 5, and 3 are eliminated in that order (going through (^3, 5) and (^3)). This gives row 5 of the triangle and entries a(11) through a(15) in this sequence.
MATHEMATICA
Table[Rest@ Nest[Append[#1, {Delete[#2, #3 + 1], #2[[#3 + 1]], #3}] & @@ {#, #[[-1, 1]], Mod[#[[-1, -1]] + 1, Length@ #[[-1, 1]]]} &, {{Range@ n, 0, 0}}, n][[All, 2]], {n, 14}] // Flatten (* Michael De Vlieger, Nov 13 2018 *)
PROG
(Python)
def A321298(n, k):
if 2*k<=n: return 2*k
n2, r=divmod(n, 2)
if r==0: return 2*A321298(n2, k-n2)-1
if k==n2+1: return 1
return 2*A321298(n2, k-n2-1)+1 # Pontus von Brömssen, Sep 18 2022
CROSSREFS
The right border of this triangle is A006257.
Sequence in context: A145706 A139631 A029177 * A261554 A161229 A029176
KEYWORD
easy,nonn,tabl,changed
AUTHOR
Zeph L. Turner, Nov 02 2018
EXTENSIONS
Name clarified by Pontus von Brömssen, Sep 18 2022
STATUS
approved