login
A029177
Expansion of 1/((1-x^2)(1-x^4)(1-x^5)(1-x^12)).
2
1, 0, 1, 0, 2, 1, 2, 1, 3, 2, 4, 2, 6, 3, 7, 4, 9, 6, 10, 7, 13, 9, 15, 10, 19, 13, 21, 15, 25, 19, 28, 21, 33, 25, 37, 28, 43, 33, 47, 37, 54, 43, 59, 47, 67, 54, 73, 59, 82, 67, 89, 73, 99, 82, 107, 89, 118, 99, 127, 107, 140, 118, 150, 127, 164, 140, 175, 150, 190, 164, 203
OFFSET
0,5
LINKS
FORMULA
G.f.: 1/((1-x^2)(1-x^4)(1-x^5)(1-x^12)).
a(n) = -a(-23 - n).
a(n) = A029011(A084964(n) - 2).
MAPLE
M := Matrix(23, (i, j)-> if (i=j-1) or (j=1 and member(i, [2, 4, 5, 11, 12, 18, 19, 21])) then 1 elif j=1 and member(i, [6, 7, 9, 14, 16, 17, 23]) then -1 else 0 fi); a := n -> (M^(n))[1, 1]; seq (a(n), n=0..70); # Alois P. Heinz, Jul 25 2008
MATHEMATICA
CoefficientList[Series[1/((1-x^2)(1-x^4)(1-x^5)(1-x^12)), {x, 0, 70}], x] (* Harvey P. Dale, May 31 2012 *)
PROG
(PARI) a(n)=if(n<-22, -a(-23-n), polcoeff(1/((1-x^2)*(1-x^4)*(1-x^5)*(1-x^12))+x*O(x^n), n))
CROSSREFS
Cf. A029011(n) = a(2n) = a(2n+5).
Sequence in context: A025802 A145706 A139631 * A321298 A261554 A161229
KEYWORD
nonn,easy
STATUS
approved