login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139631
Expansion of chi(x^5) / chi(-x^2) in powers of x where chi() is a Ramanujan theta function.
4
1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 3, 2, 4, 2, 5, 4, 6, 5, 8, 6, 11, 8, 13, 10, 16, 14, 20, 17, 24, 21, 31, 26, 37, 32, 44, 41, 54, 49, 64, 59, 79, 72, 94, 86, 111, 106, 132, 126, 156, 149, 187, 178, 219, 210, 257, 251, 302, 295, 352, 346, 416, 406, 483, 474, 560
OFFSET
0,7
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/8) * eta(q^4) * eta(q^10)^2 / (eta(q^2) * eta(q^5) * eta(q^20)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (640 t)) = 2^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A139632.
G.f.: Product_{k>0} (1 + x^(2*k)) * (1 + x^(5*k)) / (1 + x^(10*k)).
a(n) = A139632(2*n).
a(n) ~ exp(Pi*sqrt(n/5)) / (4 * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
EXAMPLE
G.f. = 1 + x^2 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + x^9 + 3*x^10 + 2*x^11 + ...
G.f. = 1/q + q^15 + q^31 + q^39 + 2*q^47 + q^55 + 2*q^63 + q^71 + 3*q^79 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2, x^2] QPochhammer[ -x^5, x^10], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k)) * (1 + x^(5*k)) / (1 + x^(10*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^10 + A)^2 / (eta(x^2 + A) * eta(x^5 + A) * eta(x^20 + A)), n))};
CROSSREFS
Cf. A139632.
Sequence in context: A025806 A025802 A145706 * A029177 A321298 A261554
KEYWORD
nonn
AUTHOR
Michael Somos, Apr 27 2008
STATUS
approved