OFFSET
0,7
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/8) * eta(q^4) * eta(q^10)^2 / (eta(q^2) * eta(q^5) * eta(q^20)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (640 t)) = 2^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A139632.
G.f.: Product_{k>0} (1 + x^(2*k)) * (1 + x^(5*k)) / (1 + x^(10*k)).
a(n) = A139632(2*n).
a(n) ~ exp(Pi*sqrt(n/5)) / (4 * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
EXAMPLE
G.f. = 1 + x^2 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + x^9 + 3*x^10 + 2*x^11 + ...
G.f. = 1/q + q^15 + q^31 + q^39 + 2*q^47 + q^55 + 2*q^63 + q^71 + 3*q^79 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2, x^2] QPochhammer[ -x^5, x^10], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k)) * (1 + x^(5*k)) / (1 + x^(10*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^10 + A)^2 / (eta(x^2 + A) * eta(x^5 + A) * eta(x^20 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Apr 27 2008
STATUS
approved