login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007098
Number of unlabeled bisectable trees with 2n+1 nodes.
(Formerly M2596)
2
1, 1, 3, 6, 19, 47, 140, 374, 1082, 2998, 8574, 24130, 68876, 195587, 559076, 1596651, 4575978, 13122219, 37711998, 108488765, 312577827, 901531937, 2603264050, 7524331268, 21768850808, 63032844756, 182662328945, 529722408615, 1537261773438
OFFSET
0,3
REFERENCES
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1980.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. Harary, R. W. Robinson, Isomorphic factorizations VIII: bisectable trees, Combinatorica 4 (2) (1984) 169-179.
FORMULA
a(n) = Sum_{k=1..n} binomial(k + 1, 2) * A228601(n, k). - Sean A. Irvine, Oct 10 2017
CROSSREFS
Cf. A228601.
Sequence in context: A347685 A219286 A104264 * A226322 A148566 A148567
KEYWORD
nonn
EXTENSIONS
a(23) onwards added by N. J. A. Sloane, Oct 19 2006 from the Robinson reference
STATUS
approved