login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298363
Matula-Goebel numbers of rooted identity trees with thinning limbs.
0
1, 2, 3, 5, 6, 10, 11, 15, 22, 26, 30, 31, 33, 39, 55, 58, 62, 65, 66, 78, 87, 93, 94, 110, 127, 130, 141, 143, 145, 155, 158, 165, 174, 186, 195, 202, 235, 237, 254, 274, 282, 286, 290, 303, 310, 319, 330, 334, 341, 377, 381, 390, 395, 403, 411, 429, 435, 465
OFFSET
1,2
COMMENTS
An unlabeled rooted tree has thinning limbs if its outdegrees are weakly decreasing from root to leaves.
FORMULA
Intersection of A276625 and A298303.
EXAMPLE
Sequence of trees begins:
1 o
2 (o)
3 ((o))
5 (((o)))
6 (o(o))
10 (o((o)))
11 ((((o))))
15 ((o)((o)))
22 (o(((o))))
26 (o(o(o)))
30 (o(o)((o)))
31 (((((o)))))
33 ((o)(((o))))
39 ((o)(o(o)))
55 (((o))(((o))))
58 (o(o((o))))
62 (o((((o)))))
65 (((o))(o(o)))
66 (o(o)(((o))))
78 (o(o)(o(o)))
87 ((o)(o((o))))
93 ((o)((((o)))))
94 (o((o)((o))))
MATHEMATICA
MGtree[n_]:=If[n===1, {}, MGtree/@Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
idthinQ[t_]:=And@@Cases[t, b_List:>UnsameQ@@b&&Length[b]>=Max@@Length/@b, {0, Infinity}];
Select[Range[500], idthinQ[MGtree[#]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 17 2018
STATUS
approved