OFFSET
1,3
COMMENTS
A rooted tree with thinning limbs is such that if a node has k children, all its children have at most k children.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..141
EXAMPLE
The a(5) = 6 trees are ((((o)))), (o((o))), (o(oo)), ((o)(o)), (oo(o)), (oooo). - Gus Wiseman, Jan 25 2018
MAPLE
b:= proc(n, i, h, v) option remember; `if`(n=0,
`if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0,
`if`(n=v, 1, add(binomial(A(i, min(i-1, h))+j-1, j)
*b(n-i*j, i-1, h, v-j), j=0..min(n/i, v)))))
end:
A:= proc(n, k) option remember;
`if`(n<2, n, add(b(n-1$2, j$2), j=1..min(k, n-1)))
end:
a:= n-> A(n$2):
seq(a(n), n=1..35); # Alois P. Heinz, Jul 08 2014
MATHEMATICA
b[n_, i_, h_, v_] := b[n, i, h, v] = If[n==0, If[v==0, 1, 0], If[i<1 || v<1 || n<v, 0, If[n==v, 1, Sum[Binomial[A[i, Min[i-1, h]]+j-1, j]*b[n-i*j, i-1, h, v-j], {j, 0, Min[n/i, v]}]]]];
A[n_, k_] := A[n, k] = If[n<2, n, Sum[b[n-1, n-1, j, j], {j, 1, Min[k, n-1] }]];
a[n_] := A[n, n];
Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 30 2006, suggested by Franklin T. Adams-Watters
EXTENSIONS
More terms from Alois P. Heinz, Jul 04 2014
STATUS
approved