login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298362
Number of tight m X n pavings as defined in Knuth's A285357 written as triangle T(m,n), m >= 1, 1 <= n <= m.
4
1, 1, 4, 1, 11, 64, 1, 26, 282, 2072, 1, 57, 1071, 12279, 106738, 1, 120, 3729, 63858, 781458, 7743880, 1, 247, 12310, 305464, 5111986, 66679398, 735490024, 1, 502, 39296, 1382648, 30980370, 521083252, 7216122740, 87138728592, 1, 1013, 122773, 6029325, 178047831, 3802292847, 65106398091
OFFSET
1,3
COMMENTS
See A285357.
For m < n, one has A285357(m,n) = T(n,m). Thus, row and column n of A285357 start with the n terms of row n, then go on downwards in column n: e.g., the full row/column 2 is (1, 4, 11, 26, ...) = A000295 (without initial 0); row/column 3 is (1, 11, 64, 282, 1071, ...) = A285361. - M. F. Hasler, Jan 20 2018
LINKS
Konstantin Vladimirov, Generating things, Program naivepavings.cc to enumerate all tight pavings.
EXAMPLE
The triangle starts:
================================================================================
m \ n| 1 2 3 4 5 6 7 8 9
-----|--------------------------------------------------------------------------
. 1 | 1
. 2 | 1 4
. 3 | 1 11 64
. 4 | 1 26 282 2072
. 5 | 1 57 1071 12279 106738
. 6 | 1 120 3729 63858 781458 7743880
. 7 | 1 247 12310 305464 5111986 66679398 735490024
. 8 | 1 502 39296 1382648 30980370 521083252 7216122740 87138728592
. 9 | 1 1013 122773 6029325 178047831 3802292847 65106398091 ? ?
. 10 | 1 2036 378279 25628762 985621119 26409556208 ...
PROG
(C++) // See Vladimirov link.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Hugo Pfoertner, Jan 17 2018
EXTENSIONS
Added a number of values in the example table, Denis Roegel, Feb 24 2018
Extended using data from Denis Roegel by Hugo Pfoertner, Mar 12 2018
STATUS
approved