login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155085
a(n) = n + sum of divisors of n.
11
2, 5, 7, 11, 11, 18, 15, 23, 22, 28, 23, 40, 27, 38, 39, 47, 35, 57, 39, 62, 53, 58, 47, 84, 56, 68, 67, 84, 59, 102, 63, 95, 81, 88, 83, 127, 75, 98, 95, 130, 83, 138, 87, 128, 123, 118, 95, 172, 106, 143, 123, 150, 107, 174, 127, 176, 137, 148, 119, 228, 123, 158, 167, 191
OFFSET
1,1
COMMENTS
If n is a prime, a(n)=2n+1, if n is a perfect number a(n)=3n, if n is of the form 2^m, a(n) = 2^(m+1) + 2^m -1. Generally a(n)>=2n+1.
LINKS
FORMULA
If n = Product_{i=1...k} Pi^ki is the prime power factorization of n, then a(n) = n + [Product_{i=1...k} {Pi^(ki+1)-1}]/[Product_{i=1...k} (Pi-1)]. For example, 18 = 2*3^2; a(18) = 18+(2^2-1)*(3^3-1)/[(2-1)*(3-1)] = 57.
a(n) = A000203(n) + n = A001065(n) + 2*n. - Michael Somos, Sep 19 2011
a(n) = A001065(-n). - Michael Somos, Sep 20 2011
G.f.: 1/(1-x)+1/(1-x)^2 - 2*x/(Q(0) - 2*x^2 + 2*x), where Q(k)= (2*x^(k+2) - x - 1)*k - 1 - 2*x + 3*x^(k+2) - x*(k+3)*(k+1)*(1-x^(k+2))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 16 2013
G.f.: x/(1 - x)^2 + Sum_{k>=1} x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Mar 17 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = (zeta(2)+1)/2 = 1.322467... . - Amiram Eldar, Mar 17 2024
EXAMPLE
Taking 18 as an example, a(18) = 18+1+2+3+6+9+18=57; 18=2*3^2; a(18)=18+(2^2-1)*(3^3-1)/[(2-1)*(3-1)]=57. [Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 25 2009]
MATHEMATICA
Table[n+DivisorSigma[1, n], {n, 70}] (* Harvey P. Dale, Apr 27 2019 *)
PROG
(PARI) {a(n) = if( n==0, 0, sigma(n) + n)}; /* Michael Somos, Sep 19 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 19 2009, Jan 25 2009, Jan 26 2009
EXTENSIONS
More terms from N. J. A. Sloane, Jan 24 2009
Zero removed and offset corrected by Omar E. Pol, Jan 27 2009
STATUS
approved