

A155082


Composites k such that the number of prime factors of composite(k) (counted with multiplicity) is composite.


1



9, 14, 24, 27, 39, 42, 45, 58, 60, 64, 65, 74, 76, 95, 99, 102, 105, 114, 115, 119, 122, 141, 146, 152, 168, 172, 175, 176, 178, 182, 187, 194, 196, 201, 204, 217, 231, 234, 243, 244, 249, 261, 268, 273, 275, 278, 279, 280, 287, 291, 298, 300, 301, 304, 312
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..10000


EXAMPLE

9 (composite) is a term because composite(9) = 16 = 2*2*2*2 (4 prime factors);
14 (composite) is a term because composite(14) = 24 = 2*2*2*3 (4 prime factors);
24 (composite) is a term because composite(24) = 36 = 2*2*3*3 (4 prime factors).


PROG

(GAP) A:=Filtered([2..500], n>not IsPrime(n));;
B:=List(List(A, Factors), Length);;
a:=Filtered([1..Length(B)], i>B[i] in A and not IsPrime(i)); # Muniru A Asiru, Feb 10 2019


CROSSREFS

Cf. A000040, A002808, A001222.
Sequence in context: A001198 A151915 A100263 * A161547 A104812 A329751
Adjacent sequences: A155079 A155080 A155081 * A155083 A155084 A155085


KEYWORD

nonn


AUTHOR

JuriStepan Gerasimov, Jan 20 2009


EXTENSIONS

Corrected (45 inserted, 109 removed, 146 replaced with 146 etc.) by R. J. Mathar, May 05 2010


STATUS

approved



