login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n mod 4.
123

%I #74 May 30 2024 16:56:30

%S 0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,

%T 2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,

%U 0,1,2,3,0,1,2,3,0,1,2,3,0

%N a(n) = n mod 4.

%C Complement of A002265, since 4*A002265(n)+a(n) = n. - _Hieronymus Fischer_, Jun 01 2007

%C The rightmost digit in the base-4 representation of n. Also, the equivalent value of the two rightmost digits in the base-2 representation of n. - _Hieronymus Fischer_, Jun 11 2007

%C Periodic sequences of this type can be also calculated by a(n) = floor(q/(p^m-1)*p^n) mod p, where q is the number representing the periodic digit pattern and m is the period length. p and q can be calculated as follows: Let D be the array representing the number pattern to be repeated, m = size of D, max = maximum value of elements in D. Than p := max + 1 and q := p^m*sum_{i=1..m} D(i)/p^i. Example: D = (0, 1, 2, 3), p = 4 and q = 57 for this sequence. - _Hieronymus Fischer_, Jan 04 2013

%H Antti Karttunen, <a href="/A010873/b010873.txt">Table of n, a(n) for n = 0..65536</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1).

%F a(n) = (1/2)*(3-(-1)^n-2*(-1)^floor(n/2));

%F also a(n) = (1/2)*(3-(-1)^n-2*(-1)^((2n-1+(-1)^n)/4)));

%F also a(n) = (1/2)*(3-(-1)^n-2*sin(Pi/4*(2n+1+(-1)^n))).

%F G.f.: (3x^3+2x^2+x)/(1-x^4). - _Hieronymus Fischer_, May 29 2007

%F From _Hieronymus Fischer_, Jun 11 2007: (Start)

%F Trigonometric representation: a(n)=2^2*(sin(n*Pi/4))^2*sum{1<=k<4, k*product{1<=m<4,m<>k, (sin((n-m)*Pi/4))^2}}. Clearly, the squared terms may be replaced by their absolute values '|.|'.

%F Complex representation: a(n)=1/4*(1-r^n)*sum{1<=k<4, k*product{1<=m<4,m<>k, (1-r^(n-m))}} where r=exp(Pi/2*i)=i=sqrt(-1). All these formulas can be easily adapted to represent any periodic sequence.

%F a(n) = n mod 2+2*(floor(n/2)mod 2) = A000035(n)+2*A000035(A004526(n)). (End)

%F a(n) = 6 - a(n-1) - a(n-2) - a(n-3) for n > 2. - _Reinhard Zumkeller_, Apr 13 2008

%F a(n) = 3/2 + cos((n+1)pi)/2 + sqrt(2)cos((2n+3)Pi/4) [_Jaume Oliver Lafont_, Dec 05 2008]

%F From _Hieronymus Fischer_, Jan 04 2013: (Start)

%F a(n) = floor(41/3333*10^(n+1)) mod 10.

%F a(n) = floor(19/85*4^(n+1)) mod 4. (End)

%F E.g.f.: 2*sinh(x) - sin(x) + cosh(x) - cos(x). - _Stefano Spezia_, Apr 20 2021

%F From _Nicolas Bělohoubek_, May 30 2024: (Start)

%F a(n) = (2*a(n-1)-1)*(2-a(n-2)) for n > 1.

%F a(n) = (2*a(n-1)^2+1)*(3-a(n-1))/3 for n > 0. (End)

%p seq(chrem( [n,n], [1,4] ), n=0..80); # _Zerinvary Lajos_, Mar 25 2009

%t nn=40; CoefficientList[Series[(x+2x^2+3x^3)/(1-x^4), {x,0,nn}], x] (* _Geoffrey Critzer_, Jul 26 2013 *)

%t Table[Mod[n,4], {n, 0, 100}] (* _T. D. Noe_, Jul 26 2013 *)

%t PadRight[{},120,{0,1,2,3}] (* _Harvey P. Dale_, Mar 29 2018 *)

%o (PARI) a(n)=n%4 \\ _Charles R Greathouse IV_, Dec 05 2011

%o (Haskell)

%o a010873 n = (`mod` 4)

%o a010873_list = cycle [0..3] -- _Reinhard Zumkeller_, Jun 05 2012

%o (Scheme) (define (A010873 n) (modulo n 4)) ;; _Antti Karttunen_, Nov 07 2017

%Y Partial sums: A130482. Other related sequences A130481, A130483, A130484, A130485.

%Y Cf. A004526, A002264, A002265, A002266.

%Y Cf. A000035, A010877.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_

%E First to third formulas re-edited for better readability by _Hieronymus Fischer_, Dec 05 2011

%E Incorrect g.f. removed by _Georg Fischer_, May 18 2019