login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195013
Multiples of 2 and of 3 interleaved: a(2n-1) = 2n, a(2n) = 3n.
13
2, 3, 4, 6, 6, 9, 8, 12, 10, 15, 12, 18, 14, 21, 16, 24, 18, 27, 20, 30, 22, 33, 24, 36, 26, 39, 28, 42, 30, 45, 32, 48, 34, 51, 36, 54, 38, 57, 40, 60, 42, 63, 44, 66, 46, 69, 48, 72, 50, 75, 52, 78, 54, 81, 56, 84, 58, 87, 60, 90, 62, 93, 64, 96, 66, 99, 68, 102
OFFSET
1,1
COMMENTS
First differences of A195014.
LINKS
D. H. Bailey, J. M. Borwein, and J. S. Kimberley, Discovery of large Poisson polynomials using a new arbitrary precision software package, Slides, 2015.
D. H. Bailey, J. M. Borwein, and J. S. Kimberley, Computer discovery and analysis of large Poisson polynomials, 2016.
FORMULA
Pair(2*n, 3*n).
From Bruno Berselli, Sep 26 2011: (Start)
G.f.: x*(2+3*x)/(1-x^2)^2.
a(n) = (5*n+(n-2)*(-1)^n+2)/4.
a(n) = 2*a(n-2) - a(n-4) = a(n-2) + A010693(n-1).
a(n)+a(-n) = A010673(n).
a(n)-a(-n) = A106832(n). (End)
MATHEMATICA
With[{r = Range[50]}, Riffle[2*r, 3*r]] (* or *)
LinearRecurrence[{0, 2, 0, -1}, {2, 3, 4, 6}, 100] (* Paolo Xausa, Feb 09 2024 *)
PROG
(Magma) &cat[[2*n, 3*n]: n in [1..34]]; // Bruno Berselli, Sep 25 2011
(Haskell)
import Data.List (transpose)
a195013 n = a195013_list !! (n-1)
a195013_list = concat $ transpose [[2, 4 ..], [3, 6 ..]]
-- Reinhard Zumkeller, Apr 06 2015
(PARI) a(n)=(5*n+(n-2)*(-1)^n+2)/4 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. A111712 (partial sums of this sequence prepended with 1).
Sequence in context: A092404 A094871 A157450 * A079667 A073061 A300526
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 09 2011
STATUS
approved