OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
FORMULA
a(n) = n*(3 - (n mod 2)).
From Bruno Berselli, Sep 26 2011: (Start)
G.f.: 2*x*(1+3*x+x^2)/(1-x^2)^2.
a(n) = (1/2)*((-1)^n+5)*n.
a(n) = 2*a(n-2) - a(n-4); a(1)=2, a(2)=6, a(3)=6, a(4)=12. - Harvey P. Dale, Aug 14 2013
MAPLE
a:=n->add(2+add((-1)^j, j=2..n), j=1..n):seq(a(n), n=1..69); # Zerinvary Lajos, Dec 13 2008
MATHEMATICA
Flatten[Table[{4n-2, 6n}, {n, 30}]] (* or *) LinearRecurrence[{0, 2, 0, -1}, {2, 6, 6, 12}, 60] (* Harvey P. Dale, Aug 14 2013 *)
PROG
(Magma) &cat[[4*n-2, 6*n]: n in [1..25]]; // Bruno Berselli, Sep 26 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, May 19 2005
EXTENSIONS
Definition corrected by Bruno Berselli, Sep 26 2011
STATUS
approved