This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106834 Triangle read by rows: T(n, m) = number of painted forests on labeled vertex set [n] with m trees. Also number of painted forests with exactly n - m edges. 1
 1, 1, 2, 3, 6, 3, 16, 30, 18, 4, 125, 220, 135, 40, 5, 1296, 2160, 1305, 420, 75, 6, 16807, 26754, 15750, 5180, 1050, 126, 7, 262144, 401408, 229824, 75460, 16100, 2268, 196, 8, 4782969, 7085880, 3949722, 1282176, 278775, 42336, 4410, 288, 9 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Row sums equal A101313 (Number of painted forests - exactly one of its trees is painted - on labeled vertex set [n].). LINKS Alois P. Heinz, Rows n = 1..141, flattened Washington Bomfim, Illustration Of This Sequence. [Broken link?] FORMULA T(n, m)= m * f(n, m), where f(n, m) = number of forests with n nodes and m labeled trees, A105599. E.g.f.: y*B(x)*exp(y*B(x)), where B(x) is e.g.f. for A000272. - Vladeta Jovovic, May 24 2005 EXAMPLE T(4,3) = 18 because there are 18 such forests with 4 nodes and 3 trees. (See the illustration of this sequence). Triangle begins: 1; 1,         2; 3,         6,     3; 16,       30,    18,    4; 125,     220,   135,   40,    5; 1296,   2160,  1305,  420,   75,   6; 16807, 26754, 15750, 5180, 1050, 126,  7; MAPLE f:= proc(n, m) option remember;       if n<0 then 0     elif n=m then 1     elif m<1 or m>n then 0     else add(binomial(n-1, j-1) *j^(j-2) *f(n-j, m-1), j=1..n-m+1)       fi     end: T:= (n, m)-> m*f(n, m): seq(seq(T(n, m), m=1..n), n=1..12); # Alois P. Heinz, Sep 10 2008 MATHEMATICA f[n_, m_] := f[n, m] = Which[n<0, 0, n == m, 1, m<1 || m>n, 0, True, Sum[ Binomial[n-1, j-1]*j^(j-2)*f[n-j, m-1], {j, 1, n-m+1}]]; T[n_, m_] := m*f[n, m]; Table[Table[T[n, m], {m, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *) CROSSREFS Cf. A101313, A105599, A106240. Sequence in context: A109536 A267352 A101401 * A191658 A021427 A091834 Adjacent sequences:  A106831 A106832 A106833 * A106835 A106836 A106837 KEYWORD easy,nonn,tabl AUTHOR Washington Bomfim, May 19 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 19:10 EDT 2019. Contains 324198 sequences. (Running on oeis4.)