login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079667
a(n) = (1/2) * Sum_{d divides n} abs(n/d-d).
11
0, 1, 2, 3, 4, 6, 6, 9, 8, 12, 10, 16, 12, 18, 16, 21, 16, 27, 18, 28, 24, 30, 22, 40, 24, 36, 32, 42, 28, 50, 30, 49, 40, 48, 36, 65, 36, 54, 48, 66, 40, 72, 42, 70, 60, 66, 46, 92, 48, 77, 64, 84, 52, 96, 60, 92, 72, 84, 58, 126, 60, 90, 82, 105, 72, 120, 66, 112, 88, 114, 70
OFFSET
1,3
COMMENTS
Also, Sum_{i|n, sqrt(n)<i<=n} i - Sum_{i|n, 1<=i<sqrt(n)} i.
REFERENCES
H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 323.
LINKS
FORMULA
a(n) = A070038(n) - A066839(n).
G.f.: Sum_{k>0} x^(k^2+k)/(1-x^k)^2 . - Michael Somos, Nov 19 2005
MATHEMATICA
Table[DivisorSum[n, Abs[n/# - #] &, # <= Sqrt[n] &], {n, 71}] (* Michael De Vlieger, Mar 17 2021 *)
PROG
(PARI) a(n)=if(n<2, 0, sumdiv(n, d, abs(n/d-d))/2) /* Michael Somos, Nov 19 2005 */
(SageMath)
def A079667(n): return sum(n//d - d for d in divisors(n) if d*d <= n)
print([A079667(n) for n in range(1, 72)]) # Peter Luschny, Jan 01 2024
CROSSREFS
Sequence in context: A094871 A157450 A195013 * A073061 A300526 A006874
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jan 25 2003
STATUS
approved