OFFSET
0,2
COMMENTS
From Andrew Rupinski, Nov 30 2009: (Start)
For n > 0, a(n) appears to be the set such that binomial(2*a(n),r) - binomial(2*a(n),r-2) = binomial(2*a(n),s) - binomial(2*a(n),s-2) for some r != s.
As a consequence of the Weyl Dimension Formula and the above comment, a(n) also appears to be the indices k such that the Symplectic Group Sp(k) has two fundamental irreducible representations of the same dimension. (End)
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
John Tyler Rascoe, Illustration of the first 10 terms.
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
a(0) = 0, a(n+1) = a(n) + 2*floor(n/2) + 3.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Joerg Arndt, Apr 02 2011
G.f.: x*(3 - x^2)/((1 + x)*(1 - x)^3). - Arkadiusz Wesolowski, Jan 01 2012
a(n) = 2n + ceiling(n^2/2). - Wesley Ivan Hurt, Jun 14 2013
a(n) = (2*n*(n + 4) - (-1)^n + 1)/4. - Bruno Berselli, Jun 14 2013
From Klaus Purath, Jan 26 2020: (Start)
a(n) = binomial(n+2, 2) + floor((n-1)/2).
a(n) = floor(A028884(n)/2) - n.
a(n) = (n+1)^2 - A099392(n+1).
a(2*n)^2 - a(2*n-1)*a(2*n+1) = 3, n > 0.
a(2*n+1)^2 - a(2*n)*a(2*n+2) = (2*n+3)^2. (End)
E.g.f.: (1/2)*(x*(5 + x)*cosh(x) + (1 + 5*x + x^2)*sinh(x)). - Stefano Spezia, Jan 26 2020
Sum_{n>=1} 1/a(n) = 11/8 + tan(sqrt(3)*Pi/2)*Pi/(2*sqrt(3)). - Amiram Eldar, Sep 16 2022
EXAMPLE
From Andrew Rupinski, Nov 30 2009: (Start)
a(1) = 3 and binomial(6,3)-binomial(6,1) = binomial(6,2)-binomial(6,0).
a(1) = 3 and the fundamental representations of Sp(3) are of dimensions 6, 14 and 14. a(2) = 6 and the fundamental representations of Sp(6) are of dimensions 12, 65, 208, 429, 572, and 429. (End)
MAPLE
seq( (2*(n+2)^2 -(-1)^n -7)/4, n=0..55); # G. C. Greubel, Jan 26 2020
MATHEMATICA
a = {0}; Do[AppendTo[a, If[Count[a, #-1] > #-1, #+1, #-1]] &@ a[[n]], {n, 1500}]; Most@ Values@ Map[Last, PositionIndex@ a] - 1 (* Michael De Vlieger, Dec 07 2016, Version 10 *)
Table[(2*(n+2)^2 -(-1)^n -7)/4, {n, 0, 55}] (* G. C. Greubel, Jan 26 2020 *)
PROG
(Haskell)
import Data.List (elemIndices)
a116940 n = last $ elemIndices n $ takeWhile (<= n + 1) a116939_list
-- Reinhard Zumkeller, Jun 28 2013
(PARI) vector(56, n, (2*(n+1)^2 +(-1)^n -7)/4) \\ G. C. Greubel, Jan 26 2020
(Magma) [(2*n*(n+4) -(-1)^n +1)/4: n in [0..55]]; // G. C. Greubel, Jan 26 2020
(Sage) [(2*n*(n+4) -(-1)^n +1)/4 for n in (0..55)] # G. C. Greubel, Jan 26 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Feb 27 2006
STATUS
approved