login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116940
Greatest m such that A116939(m) = n.
10
0, 3, 6, 11, 16, 23, 30, 39, 48, 59, 70, 83, 96, 111, 126, 143, 160, 179, 198, 219, 240, 263, 286, 311, 336, 363, 390, 419, 448, 479, 510, 543, 576, 611, 646, 683, 720, 759, 798, 839, 880, 923, 966, 1011, 1056, 1103, 1150, 1199, 1248, 1299, 1350, 1403, 1456
OFFSET
0,2
COMMENTS
From Andrew Rupinski, Nov 30 2009: (Start)
For n > 0, a(n) appears to be the set such that binomial(2*a(n),r) - binomial(2*a(n),r-2) = binomial(2*a(n),s) - binomial(2*a(n),s-2) for some r != s.
As a consequence of the Weyl Dimension Formula and the above comment, a(n) also appears to be the indices k such that the Symplectic Group Sp(k) has two fundamental irreducible representations of the same dimension. (End)
FORMULA
a(0) = 0, a(n+1) = a(n) + 2*floor(n/2) + 3.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Joerg Arndt, Apr 02 2011
G.f.: x*(3 - x^2)/((1 + x)*(1 - x)^3). - Arkadiusz Wesolowski, Jan 01 2012
a(n) = 2n + ceiling(n^2/2). - Wesley Ivan Hurt, Jun 14 2013
a(n) = (2*n*(n + 4) - (-1)^n + 1)/4. - Bruno Berselli, Jun 14 2013
a(n) = A081352(n) - A236283(n + 1). - Miko Labalan, Dec 04 2016
From Klaus Purath, Jan 26 2020: (Start)
a(n) = binomial(n+2, 2) + floor((n-1)/2).
a(n) = floor(A028884(n)/2) - n.
a(n) = (n+1)^2 - A099392(n+1).
a(2*n)^2 - a(2*n-1)*a(2*n+1) = 3, n > 0.
a(2*n+1)^2 - a(2*n)*a(2*n+2) = (2*n+3)^2. (End)
E.g.f.: (1/2)*(x*(5 + x)*cosh(x) + (1 + 5*x + x^2)*sinh(x)). - Stefano Spezia, Jan 26 2020
a(n) = A000217(2*n) - 2*A001859(n-1) for n>0. - John Tyler Rascoe, Jul 31 2022
Sum_{n>=1} 1/a(n) = 11/8 + tan(sqrt(3)*Pi/2)*Pi/(2*sqrt(3)). - Amiram Eldar, Sep 16 2022
EXAMPLE
a(n) = A000982(n) + A005843(n).
From Andrew Rupinski, Nov 30 2009: (Start)
a(1) = 3 and binomial(6,3)-binomial(6,1) = binomial(6,2)-binomial(6,0).
a(1) = 3 and the fundamental representations of Sp(3) are of dimensions 6, 14 and 14. a(2) = 6 and the fundamental representations of Sp(6) are of dimensions 12, 65, 208, 429, 572, and 429. (End)
MAPLE
seq( (2*(n+2)^2 -(-1)^n -7)/4, n=0..55); # G. C. Greubel, Jan 26 2020
MATHEMATICA
a = {0}; Do[AppendTo[a, If[Count[a, #-1] > #-1, #+1, #-1]] &@ a[[n]], {n, 1500}]; Most@ Values@ Map[Last, PositionIndex@ a] - 1 (* Michael De Vlieger, Dec 07 2016, Version 10 *)
Table[(2*(n+2)^2 -(-1)^n -7)/4, {n, 0, 55}] (* G. C. Greubel, Jan 26 2020 *)
PROG
(Haskell)
import Data.List (elemIndices)
a116940 n = last $ elemIndices n $ takeWhile (<= n + 1) a116939_list
-- Reinhard Zumkeller, Jun 28 2013
(PARI) vector(56, n, (2*(n+1)^2 +(-1)^n -7)/4) \\ G. C. Greubel, Jan 26 2020
(Magma) [(2*n*(n+4) -(-1)^n +1)/4: n in [0..55]]; // G. C. Greubel, Jan 26 2020
(Sage) [(2*n*(n+4) -(-1)^n +1)/4 for n in (0..55)] # G. C. Greubel, Jan 26 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Feb 27 2006
STATUS
approved